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Abstract This paper considers connectivity preservation and collision avoidance
controller design for spacecraft formation flying with bounded actuation. A dis-
tributed controller with bounded artificial potential function and indirect couplings is
proposed. It is assumed that all spacecraft can only obtain the states of their neighbors.
The communication graph between the spacecraft is modeled via distance-induced
proximity graph. A bounded potential function is presented to tackle connectiv-
ity preservation and collision avoidance problems. The spacecraft-proxy couplings
address the actuator saturation constraints by designing a virtual proxy for each
spacecraft. The inter-proxy artificial potential function fulfills the coordination of
all spacecraft. Numerical simulations confirm the effectiveness of the anti-saturation
distributed connectivity preservation controller.

Keywords Spacecraft formation flying · Bounded actuation · Artificial potential
function · Connectivity preservation

1 Introduction

Spacecraft formation flying (SFF) has gained considerable intentions due to its flex-
ibility and robustness [1]. One of the critical issues for SFF is to design distributed
controllers to achieve formation maintenance or reconfiguration. The fulfillments of
distributed controllers require the connectivity of the communication graphs at all
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time [2, 3]. However, constrained by the communication range of the spacecraft, the
graph’s connectivity might be destroyed by the movements of the spacecraft. A more
practical question is how to maintain the connectivity of the graph [4].

The connectivity preservation controllers have been studied in multi-agent sys-
tems and mobile robotic systems in the last decade [5, 6]. The connectivity preserva-
tion methods mainly include the optimization-based methods [7, 8] and the artificial
potential function (APF) based methods [9, 10]. The optimization-based method ful-
fills connectivity preservation by maximizing algebraic connectivity of the graph in
[7]. Ji andEgerstedt proposed a distributed connectivity preservation controllermulti-
agent systems by designing appropriate weights to a potential function to different
agents [9]. The literature [11] presented a bounded input to implement a distributed
connectivity maintenance controller for a first-order system with stationary lead-
ers. Reference [12] studied the connectivity preservation problems for a multi-robot
system with bounded control. A distributed connectivity preservation controller for
Euler–Lagrange systems with time-delay and bounded actuation is designed in [13].
However, the connectivity preservation study for SFF has not been investigated.
Literature [14] provided a potential function based control method to avoid the colli-
sions between spacecraft and preserve the connectivity of communication networks
simultaneously. The connectivity preservation problem of leader-follower Lagrange
systems is studied, and simulations with spacecraft relative dynamics are proposed
in [15]. However, the above studies did not consider the collision avoidance problem
in formation.

The challenge now is to design distributed controllers for spacecraft in consider-
ation of bounded actuation, connectivity preservation, and collision avoidance at the
same time. Inspired by the previous discussions, this paper proposes a distributed
controller with indirect couplings and bounded artificial potential functions. Firstly,
the communication graph between spacecraft is defined according to the relative
distances between all spacecraft. Then, a bounded artificial potential function is
presented. Moreover, a local second-order virtual proxy spacecraft is designed for
each spacecraft. The virtual proxy and the spacecraft are coupled with a saturated
P+d controller. Finally, the virtual proxies are connected through the two poten-
tial functions. Numerical simulations confirm the effectiveness of the anti-saturation
distributed connectivity preservation controller.

2 Background

2.1 Spacecraft Relative Dynamics

Consider a system with N rigid spacecraft denoted by pi = [pix , piy, piz]� in the
reference frame, the relative dynamics of the spacecraft are described by [16]

mi p̈i = miC i ṗi + migi ( pi ) + f i , (1)
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where

C i = 2θ̇0

⎡
⎣

0 1 0
−1 0 0
0 0 0

⎤
⎦ ,

gi ( pi ) = μ

r3i
pi −

⎡
⎣

θ̇2
0 θ̈0 0

−θ̈0 θ̇2
0 0

0 0 0

⎤
⎦ pi − μ

⎡
⎣

− r0
r3i

+ 1
r20

0
0

⎤
⎦ ,

and mi denotes the mass of the spacecraft i , f i denotes the control input to be
designed, μ is the gravitational constant of the Earth, θ0 denotes the true anomaly of
the reference spacecraft, r0 denotes the distance of the origin of the reference frame

to the Earth’s center, ri =
√

(r0 + pix )2 + p2iy + p2i z represents the distance between

the Earth’s center and the centroid of the spacecraft i .

2.2 Algebraic Graph Theory

The distance-induced proximity graph can bemodeled by graph theory. Some notions
of graph theory are presented in this subsection [17]. A undirected graph is denoted
as G(V, E), where V = {1, 2, . . . , N } denotes the vertex set and E ⊂ V × V denotes
the edge set. An edge (i, j) ∈ E if the vertex i can communicatewith the vertex j , and
they are called a neighbor of each other. The neighbor set of vertex i is defined asNi =
{ j ∈ V(i, j) ∈ E}. A path of G is defined as an edge sequence (i1, i2), (i2, i3), . . .,
where (ik, ik+1) ∈ E (k = 1, 2, . . . ). A graph G is called connected if there is a path
between any two vertices in V . The adjacency matrix A(G) = [ai j ] ∈ R

N×N and the
Laplacian matrix L(G) = [li j ] ∈ R

N×N are defined as

ai j =
{
1, if (i, j) ∈ E(G);
0, otherwise.

li j =
{∑N

j=1 ai j , if i = j;
−ai j , otherwise.

Lemma 1 The Laplacian matrix L(G) is positive semidefinite if the graph G is
connected [17].
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2.3 The Dynamic Graph Model

It is assumed that the neighbor relationship among the spacecraft is based on their
relative distance. Suppose all spacecraft have the same sensing distance Δ. The
collision distance between spacecraft is denoted as δ. The adjacency matrix A(G)

between all spacecraft is generated dynamically according to the current distances
as follows:

ai j (t) =
{
1, if || pi j (t)|| ∈ (δ̄, Δ̄), i, j ∈ V};
0, otherwise;

(2)

where δ̄ = δ + ν1 and Δ̄ = Δ − ν2, pi j (t) = pi (t) − p j (t), ai j = 1 indicates space-
craft i can get the states of spacecraft j .

Assumption 1 The initial graph G(0) generated according to Eq. (2) is a connected
graph, and no collisions occurs at the initial time.

Definition 1 ([18]) The desired formation configuration pd is reachable if the fol-
lowing conditions hold

di j < Δ,∀i ∈ {1, . . . , N }, j ∈ Ni ,

where di j = || pdi − pdj || represents the desired distance between spacecraft i and j .

Assumption 2 The desired formation pd is reachable.

Assumption 3 The saturation bound is enough to balance the virtual gravity item
gi in Eq. (1), i.e., f̄ i satisfies |gi | ≤ ḡi ≤ f̄ i , where f̄ i is the saturation bound for
each spacecraft.

Assumption 4 All spacecraft are initially at rest, i.e., ṗi (0) = 0.

Remark 1 It is generally infeasible for bounded control input to preserve the con-
nectivity of a second-order system and the same as Eq. (1). An example is shown in
[19]. Therefore, the Assumption 4 is reasonable.

2.4 Artificial Potential Function

To design the distributed controller, a bounded artificial potential function J
(∥∥ p̂i j

∥∥)
is given as

J
(∥∥ p̂i j

∥∥) =
⎧⎨
⎩
P Jr

(∥∥ p̂i j
∥∥)

, if || p̂i j || ∈
[
δ̂, di j

]
;

P Ja
(∥∥ p̂i j

∥∥)
, if || p̂i j || ∈

[
di j , Δ̂

]
; (3)

where
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Jr
(∥∥ p̂i j

∥∥) =
(∥∥ p̂i j

∥∥ − d
)2 (

Δ̂ − ∥∥ p̂i j
∥∥)

∥∥ p̂i j
∥∥ − δ̂ + (d−δ̂)2

(
Δ̂−‖ p̂i j‖

)

Q

, (4)

Ja
(∥∥ p̂i j

∥∥) = (
∥∥ p̂i j

∥∥ − δ̂)
(∥∥ p̂i j

∥∥ − d
)2

(
Δ̂ − ∥∥ p̂i j

∥∥)
+ (‖ p̂i j‖−δ̂)(Δ̂−d)2

Q

, (5)

with Δ̂ = Δ − ε1, δ̂ = δ + ε2, P and Q are positive constant. It can be verified that
J (d) = 0 and J (δ̂) = J (Δ̂) = PQ.

Lemma 2 The potential function J is monotonically increasing in regard to || p̂i j ||
while || p̂i j || ∈ (d, Δ̂), and monotonically decreasing while || p̂i j || ∈ (δ̂, d).

Proof Weprove themonotonicity of the repulsive potential function Jr
(∥∥ p̂i j

∥∥)
. The

proof of Ja
(∥∥ p̂i j

∥∥)
is omitted due to similarity. To simplify, the repulsive function

is denoted as

Jr (x) =
(x − d)2

(
Δ̂ − x

)

x − δ̂ + Q̄(Δ̂ − x)
, x ∈

(
δ̂, d

)
(6)

where x = ∥∥ p̂i j
∥∥ and Q̄ = (d−δ̂)2

Q . The partial derivative of Eq. (6) can be written as

∂ Jr (x)

∂x
=

[
2(Δ̂ − x)(x − d) − (x − d)2

] [
x − δ̂ + Q̄(Δ̂ − x)

]

[
x − δ̂ + Q̄(Δ̂ − x)

]2

+ (Q̄ − 1)(Δ̂ − x)(x − d)2[
x − δ̂ + Q̄(Δ̂ − x)

]2

=
(x − d)

[
2(Δ̂ − x) − (x − d)

]
(x − δ̂) − (Δ̂ − x)(x − d)2

[
x − δ̂ + Q̄(Δ̂ − x)

]2

+ 2Q̄(x − d)(Δ̂ − x)2[
x − δ̂ + Q̄(Δ̂ − x)

]2

(7)

Since the denominator is positive, it only needs to ensure the numerator is negative.
The numerator can be written as

(x − d)
[
2(Δ̂ − x) − (x − d)

]
(x − δ̂) − (Δ̂ − x)(x − d)2 + 2Q̄(x − d)(Δ̂ − x)2

=(x − d)
[
(2Δ̂ + d − 3x)(x − δ̂) + (Δ̂ − x)(d − x) + 2Q̄(Δ̂ − x)2

] (8)



3690 X. Xue et al.

Note that x ∈ [δ̂, d] and Δ̂ > d, Eq. (8) is negative for all x ∈ (δ̂, d). Therefore, Eq.
(7) is negative and further implies that Jr (

∥∥ p̂i j
∥∥) is monotonically decreasing in

regard to x while x ∈ (δ̂, di j ). �

Remark 2 The potential function used in [20] is generated by adding the repulsive
potential function and attractive potential function. However, the functionmight have
several minima as Jr and Ja might affect the monotonicity of each other. We give a
severe proof in Lemma 2 to ensure that the potential function has only one minimum.

3 Controller Design with Bounded Actuation

In this section, we present a distributed controller with bounded actuation constraints.
Define the following virtual proxy system for each spacecraft

¨̂pi = Sati
(
αi p̃i

) −
N∑
j=1

ai j∇i J
(‖ p̂i j‖

) − βi
˙̂pi , (9)

where p̂i denotes the position of the i-th proxy, p̃i = pi − p̂i , αi and βi are positive

constant, Sati (x) is a function saturates x component-wise with the bound f̄
k
i −

ḡki , k = 1, 2, 3. The initial state of the virtual proxy is designed as

p̂i (0) = pi (0), ˙̂pi (0) = 0, i = 1, . . . , N . (10)

Lemma 3 The virtual energy stored between spacecraft i and its virtual proxy is

ψi
(
p̃i

) =
∫ p̃i

0
Sati (αiσ )� dσ . (11)

The function has the following properties:

(1) ψi
(
p̃i

)
is a convex function.

(2) Within the domain B(0, (ε/2)) = { p̃i | || p̃i || ≤ (ε/2)},ψi
(
p̃i

)
achieves its max-

imum while
∥∥ p̃i

∥∥ = (ε/2) and its minimum while
∥∥ p̃i

∥∥ = (ε/2).
(3) Let

ψmin
i = min

p̃i
ψi

(
p̃i

) =
∫ p̃i

0
Sati (αiσ )� dσ , s.t.

∥∥ p̃i
∥∥ = ε

2
, (12)

where ε = min{ε1, ε2}. If ψi
(
p̃i

) ≤ ψmin
i , then p̃i ∈ B(0, (ε/2)).

The proof of Lemma 3 is like the Propositions 1–3 in [13], and is omitted here.
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Remark 3 By the triangle inequality
∥∥ pi j

∥∥ ≤ ∥∥ p̃i
∥∥ + ∥∥ p̂i j

∥∥ + ∥∥ p̃ j

∥∥, it is enough
to ensure

∥∥ pi j
∥∥ ≤ [δ,Δ] , (i, j) ∈ E while the following inequalities are satisfied:

∥∥ p̂i j
∥∥ ∈

[
δ̂, Δ̂

]
,

∥∥ p̃i
∥∥ ≤ ε/2. (13)

Remark 4 The energy function ψi could be regarded as a virtual artificial potential
function between the spacecraft i and its proxy. While the input of the controller
reaches saturation, the energy function gradually increases. While the input is not
saturated and the energy function is greater than zero, the energy function will grad-
ually decreases and eventually tends to zero.

Design the control input

f i = −Sati (αi p̃i ) − migi . (14)

Consider the following Lyapunov candidate

V = Vk + Vp (15)

where

Vk = 1

2

N∑
i=1

(
ṗ�
i mi ṗi + ˙̂p�

i
˙̂pi

)
(16)

Vp = 1

2

N∑
i=1

N∑
j=1

ai j J
(∥∥ p̂i j

∥∥) +
N∑
i=1

ψi
(
p̃i

)
(17)

Lemma 4 Given a system with dynamics Eq. (1) satisfies Assumptions 1–4, let M =
|E(0)|, ψmin = mini=1,...,N {ψmin

i }, and select Q and P satisfy

Q ≥
[(

Δ̄ − d
)2 − (Δ̂ − d)2

]
(Δ̄ − δ̂)

(
Δ̂ − Δ̄

) , (18)

P = ψmin

Q
. (19)

Then, V (t) ≤ V (0) ensures
∥∥ p̃i (t)

∥∥ ≤ (ε/2) and
∥∥ pi j

∥∥ ∈ [δ,Δ] , (i, j) ∈ E .
Proof By the initial configuration given in Eq. (10) and Assumption 4 and, we have
Vk(0) = 0 and ψi

(
p̃i (0)

) = 0, for i = 1, . . . , N . Therefore,
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V (0) =1

2

N∑
i=1

N∑
j=1

ai j J
(∥∥ p̂i j

∥∥)
< M

[
J (Δ̄) + J (δ̄)

]

≤J (Δ̂) = J (δ̂) = PQ = ψmin.

(20)

If V (t) ≤ V (0) satisfies, it is obtained

Vp(t) ≤ V (t) ≤ V (0) < J (Δ̂) = J (δ̂) = PQ = ψmin. (21)

Suppose the maximum distance among all initial connected edges is || p̂lm(t)|| =
Δ̂. This implies Vp(t) ≥ J (|| p̂lm(t)||) = PQ, which contradicts Eq. (21). There-
fore, all distances || p̂i j (t)|| < Δ̂, (i, j) ∈ E . Using a similar procedure, it is obtained

|| p̂i j (t)|| > δ̂.
Since J (|| p̂i j ||) ≥ 0, Eqs. (17) and (21) impliesψi

(
p̃i

) ≤ ψmin. According to the
property (3) of Eq. (11), it is obtained that

∥∥ p̃i (t)
∥∥ ≤ (ε/2). Therefore, we have

∥∥ pi j
∥∥ ≤ ∥∥ p̂i j

∥∥ + ∥∥ p̃i
∥∥ + ∥∥ p̃ j

∥∥ < Δ̂ + 2 · (ε/2) < Δ,∥∥ pi j
∥∥ ≥ ∥∥ p̂i j

∥∥ − ∥∥ p̃i
∥∥ − ∥∥ p̃ j

∥∥ > δ̂ − 2 · (ε/2) > δ.
(22)

In conclusion,
∥∥ pi j

∥∥ ∈ [δ,Δ] , (i, j) ∈ E , i.e., there are no collisions between
spacecraft and all communication links between all adjacent spacecraft are pre-
served. �

Theorem 1 Given a system with dynamics Eq. (1) satisfies Assumptions 1–4 and Q
and P are given in Eqs. (18) and (19). Then the control inputs in Eqs. (9) and (14)
can achieve the desired formation, the collision avoidances and the connectivity
preservation.

Proof Taking the derivative of Eq. (16) and substituting Eqs. (1), (9) and (14) into it
yields

V̇k(t) =
N∑
i=1

ṗ�
i

[
miC i ṗi + migi − Sati (αi p̃i ) − migi

]

+
N∑
i=1

˙̂p�
i

⎡
⎣Sati

(
αi p̃i

) −
N∑
j=1

ai j∇i J
(‖ p̂i j‖

) − βi
˙̂pi

⎤
⎦

= −
N∑
i=1

˙̃p�
i Sati (αi p̃i ) −

N∑
i=1

˙̂p�
i

N∑
j=1

ai j∇i J
(‖ p̂i j‖

) − βi

N∑
i=1

˙̂p�
i

˙̂pi .

(23)

According to the definition of Vp in Eq. (17), the derivative of it can be written as



Connectivity Preservation and Collision Avoidance Control … 3693

V̇p(t) =1

2

N∑
i=1

N∑
j=1

ai j
[
∇i J

(∥∥ p̂i j
∥∥) ˙̂pi + ∇ j J

(∥∥ p̂i j
∥∥) ˙̂p j

]
+

N∑
i=1

˙̂p�
i Sati (αi p̃i )

=
N∑
i=1

N∑
j=1

ai j∇i J
(∥∥ p̂i j

∥∥) ˙̂pi +
N∑
i=1

˙̂p�
i Sati (αi p̃i ).

(24)
By summing Eqs. (23) and (24), the derivative of V yields

V̇ (t) = −
N∑
i=1

˙̂p�
i Sati (αi p̃i ) −

N∑
i=1

˙̂p�
i

N∑
j=1

ai j∇i J
(‖ p̂i j‖

) − βi

N∑
i=1

˙̂p�
i

˙̂pi

+
N∑
i=1

∑
j=1

ai j∇i J
(∥∥ p̂i j

∥∥) ˙̂pi +
N∑
i=1

˙̂p�
i Sati (αi p̃i )

= − βi

N∑
i=1

˙̂p�
i

˙̂pi .

(25)

Therefore, V̇ (t) ≤ 0 and V (t) ≤ V (0). Lemma 4 further indicates that
∥∥ pi j

∥∥ ∈
(i, j) ∈ E , i.e., the connectivity preservation and the collisions avoidance are achieved.
Equation (25) also ensures that ṗi , J ( p̂i ), ψ( p̃i ) ∈ L∞ and ˙̂pi ∈ L2 ∩ L∞. There-
fore, ˙̂pi → 0 as t → ∞. Since J ( p̂i ) is continuously differentiable and bounded,
we have ∇i J ( p̂i ) ∈ L∞. Taking the derivative of Eq. (9) implies that

...
p̂i ∈ L∞

and ¨̂pi → 0. The secondary derivative of Eq. (9) further implies
...
p̂i → 0. There-

fore, ˙̃pi → 0, ∇i J (|| p̂i ||) → 0, (i, j) ∈ E and || p̂i || → di j . By noting ¨̂pi → 0 and
˙̂pi → 0, Eq. (9) leads to p̃i → 0. Overall, || pi || → di j , (i, j) ∈ E , i.e., the desired
formation is achieved. �

Remark 5 The parameters in Eq. (14) can be designed as follows:

(1) Compute ψmin
i according to (12);

(2) Select Q satisfy Eq. (18);
(3) Compute P according to (19).

4 Simulations

To confirm the effectiveness of the bounded actuation controller in (14) and (9), a
simulation with three spacecraft are presented in this section. The parameters of the
reference orbit are given Table 1. The sensing radius of each spacecraft is set as
Δ = 40 m, and the anti-collision distance is given as δ = 10 m. The masses of all
spacecraft are mi = 10 kg, i = 1, 2, 3.

The initial positions of three spacecraft are p1(0) = [−40,−30, 0]�m, p2(0) =
[−15,−40, 5]�m, p3(0)= [0,−40, 0]�m, thevelocities arevi (0)= [0, 0, 0]� (m/s),
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Table 1 Parameters for the reference orbit

Orbital parameters Value

Eccentricity 0.01

Inclination 0◦

Longitude ascending node 20◦

Semi-major axis 6971 km

Argument of perigee 30◦

Initial true anomaly 20◦

Gravitational parameter 3.986 × 1014 (m3/s2)

Fig. 1 The distances
between spacecraft
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i = 1, 2, 3. The desired distance between all spacecraft are d12 = 30m, d13 = 50m,
d23 = 30m. It is easy to verify that the Assumptions 1 and 2 are satisfied. The
parameters are given as Q = 10000, P = 0.002, αi = 0.2, βi = 0.1, f̄ i = 0.5 N,
f̄ i − ḡi = 0.4 N.
Figure1 presents the distance between three spacecraft over time, where the red

line represents the communication distance of the spacecraft, and the black line
represents the anti-collision distance between the spacecraft. The figure indicates
that the distances || p12|| and || p23|| has never exceeded the communication range.
The connectivity of the the graph is preserved. Figure2 demonstrates the velocity of
all three spacecraft eventually converged to zero. Figure3 presents that the distance
errors between the spacecraft and its virtual proxy spacecraft are not more than 4 m,
and it finally converges to zero. Figure4 shows that the velocity errors between the
spacecraft and the virtual proxy also eventually converged to zero. Figure5 gives the
time-varying control inputs applied to each spacecraft. It can be seen from the figure
that the maximum amplitude of the control inputs is less than 0.5 N, which satisfies
the saturation condition.
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Fig. 2 The velocities of
spacecraft
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Fig. 3 The distances
between spacecraft and
proxies
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5 Conclusions

This paper considered the impact of actuator saturation on connectivity preservation
and collision avoidance control of SFF. An indirect coupling strategy with bounded
artificial potential function is proposed to overcome actuator saturation constraints.
The proposed control algorithm is also applicable to other Lagrangian systems. In
future work, the connectivity preservation of directed graph in the presence of actu-
ator saturation will be studied.
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Fig. 4 The velocity errors
between spacecraft and
proxies
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Fig. 5 The control inputs
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