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Abstract—The recognition of early forest fires can reduce 
the resource loss caused by fire combustion. A real-time forest 
fire image recognition method based on r-shufflenetv2 network 
is proposed. R-shufflenetv2 is mainly composed of a series of 
r-shufflenetv2 units and is an improved version of the 
shufflenetv2 network. In order to improve the recognition 
accuracy, the shufflenetv2 unit is reconstructed by using the 
residual structure, which enhances the feature extraction 
ability of the network. The experimental results show that the 
r-shufflenetv2 network is a good fire recognition model. On the 
benchmark FLAME dataset, r-shufflenetv2 has higher fire 
recognition accuracy than the original shufflenetv2. In 
addition, r-shufflenetv2 also achieves real-time detection, and 
its recognition speed is about 31 FPS. 

Keywords—Forest Fire, Fire Recognition, Real-Time 
Detection, Shufflenetv2, Residual structure.  

I. INTRODUCTION 
Ecological crises caused by forest fires are usually fatal. 

On the one hand, forest burning will destroy vegetation, 
pollute the environment, endanger the survival of wild 
animals and plants and the development of human society 
[1]. On the other hand, large-scale forest fires are often 
difficult to rescue manually, and can only wait to be 
extinguished. However, if forest fires can be detected at an 
early stage, it can not only help firefighters to put out the 
fires, but also reduce the huge loss of resources caused by 
fire burning. 

With the development of sensor technology, it is popular 
to monitor and forecast forest fire based on optical sensor, 
especially using RGB camera to monitor fire [2]. Therefore, 
researchers have developed many fire recognition methods 
based on RGB images. At present, fire recognition methods 
can be divided into two categories: traditional fire image 
recognition methods and deep learning-based fire image 
recognition methods, according to whether it is necessary to 
manually extract fire feature information [3]. 

Traditional fire image recognition methods use 
hand-designed fire features to identify forest fires. These 
features usually consist of the color, texture, frequency and 
motion features of forest flame or smoke, etc. [4]. Generally 
speaking, the implementation process of traditional methods 
mainly includes four parts: image preprocessing, extraction 
of suspected fire areas, fire feature extraction and fire 
recognition and classification [5]. Image preprocessing 
enhances the target region by removing the interference of 
noise in the image to improve the subsequent recognition 
performance. Extraction of suspected fire areas can separate 
the suspected fire area from the background or other objects, 

so as to avoid the whole image operation and reduce the 
calculation amount. Fire feature extraction describes the 
phenomenon of forest fires by extracting effective fire 
feature information. Fire identification and classification is to 
identify and classify the extracted fire features by using 
classification models such as support vector machine (SVM) 
and artificial neural network (ANN).  

The main advantages of the above traditional methods are 
that the amount of calculation is small, the recognition speed 
is fast, and the task of fire recognition in a simple 
environment (ie, the background is simple and the occlusion 
is small) can be realized. However, in forests, due to factors 
such as obstacles and light changes, early fires are difficult to 
be captured by video surveillance and identified, making it 
difficult for traditional methods to be applied to forest fire 
identification in this environment. On the other hand, the 
artificially designed fire features are blind and complex, and 
sometimes cannot accurately describe the forest fire 
phenomenon, resulting in a low fire recognition rate of 
traditional methods. 

Deep learning-based fire image recognition methods can 
automatically extract fire features from images using 
convolutional neural networks (CNN), avoiding the use of 
hand-designed fire features. Compared with traditional 
methods, these fire features extracted using CNNs are more 
efficient, so it can more accurately describe forest fire 
phenomena and improve the accuracy of fire image 
recognition [6]. In [7], in order to balance the efficiency and 
accuracy of the model, the authors take advantage of the 
lightweight network GoogleNet to propose a CNN 
architecture for fire detection in surveillance videos. In [8], 
the author replaces the backbone feature network of 
YOLOv4 with MobileNet, thereby proposing a lightweight 
network structure, YOLOv4-Light. Experiments show that 
this method has higher FPS and fewer network parameters in 
forest fire detection. In [9], the authors adopted a lightweight 
network design and channel pruning method to achieve 
accurate and fast detection of smoke and flame images.  

From the above, in forest fire detection, more use of 
lightweight convolutional neural networks can not only 
improve the processing speed of the algorithm, but also 
reduce network parameters so that the network can be 
deployed on some edge processors.  

Shufflenetv2 is a lightweight network with good 
comprehensive performance [10], which has reached a 
relatively good level in terms of speed and accuracy, and is 
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widely used in many different fields to solve practical 
problems [11, 12, 13].Therefore, this paper studies the 
Shufflenetv2 network and proposes to use it to identify forest 
fire images. In addition, in order to improve the fire 
recognition accuracy, residual learning is introduced to 
modify the structure of the shufflenetv2 network, thereby 
proposing the r-shufflenetv2 network. Experimental results 
show that the r-shufflenetv2 network has better recognition 
accuracy than the original Shufflenetv2 on the benchmark 
FLAME (Fire Luminosity Airborne-based Machine Learning 
Evaluation) dataset provided by [14]. At the same time, the 
r-shufflenetv2 network realizes real-time fire identification, 
and its running speed reaches about 31FPS. 

The rest of this paper is organized as follows. The second 
section introduces a real-time forest fire image recognition 
method based on r-shufflenetv2 network. Section III presents 
some fire recognition results of this method, and analyzes the 
performance and efficiency of the network. Section IV 
summarizes the full-text work and possible future research 
work. 

II. RCOGNITION METHOD 
This section introduces a real-time fire identification 

method based on the r-shufflenetv2 network. First, how to 
design the required r-shufflenetv2 unit is described. Then, 
the r-shufflenetv2 network is built using the designed 
r-shufflenetv2 unit, and the overall architecture of the 
network is shown. 

A. R-shufflenetv2 unit 
Fig. 1 shows the composition of the r-shufflenetv2 unit. 

According to the convolution stride of 1 or 2, it is divided 
into two different structures. When the stride is 2, it 
indicates that spatial downsampling of the input feature map 
is required. At this time, the size of the feature map is 
reduced to one-half of the original size. 

1×1 Conv

 (a) Stride=1

BN ReLU

3×3 Conv 

1×1 Conv

Add

BN

BN ReLU

1×1 Conv

(b) Stride=2

BN ReLU

3×3 DWConv 

1×1 Conv

Concat

Channel Shuffle

BN ReLU

BN

3×3 DWConv
(stride =2) 

1×1 Conv
BN ReLU

BN

c c

c

Fig. 1. The r-shufflenetv2 unit. 

The biggest difference between the r-shufflenetv2 unit 
and the original shufflenetv2 unit is that the structure of the 
unit with a convolution stride of 1 is different. In this paper, 
the residual structure is used to reconstruct the 
r-shufflenetv2 unit with a convolution stride of 1. Because 

the residual structure can learn the difference between input 
features and output features, solve the problem of network 
degradation, and make the network have better feature 
expression ability. This has a positive effect on the 
improvement of network recognition accuracy. To facilitate 
the comparison of the two, this paper shows the structure of 
the shufflenetv2 unit, as shown in Fig. 1. 
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Fig. 2. The shufflenetv2 unit. 

Stride=2 Unit. According to Fig. 1(b) and Fig. 2(b), the 
structure of the unit with the convolution stride of 2 in 
r-shufflenetv2 is the same as that of the original 
shufflenetv2 unit, so it follows the design of the efficient 
network architecture proposed in [10] the four principles.  
The four principles are as follows (1) Keeping the same 
number of input and output feature channels can minimize 
memory access cost; (2) Excessive use of group convolution 
will increase memory access cost; (3) Excessive 
fragmentation of the network will reduce its parallelism; (4) 
Element-wise operations will increase memory access costs. 
Since the unit with convolution stride of 2 in r-shufflenetv2 
is proposed based on the above principles, it has a small 
memory access cost, so the intuitive result is that the 
running speed of the network will increase. 

Stride=1 Unit. According to Fig. 1(a), the unit with 
convolution stride of 1 in r-shufflenetv2 is composed of 
residual structure. The reasons for using the residual 
structure are as follows. In the original shufflenetv2 unit 
(shown in Fig. 2(a)), at the beginning of each unit, the 
feature channel of the input feature is split into two branches, 
namely c c′−  channels and c′  channels, and / 2c c′ =  
in this paper. For the convenience of explanation, it is 
assumed that branch c′  maintains the identity mapping, 
that is, does not do any convolution processing. Therefore, 
after going through this branch, the number of input features 
and output features remains the same. Branch c c′− uses 
convolution operations, including standard convolution and 
depthwise convolution (DWConv as shown in Fig. 2), to 
extract image features. Moreover, after going through 
branch c c′− , the number of input features and output 
features is still the same. After through channel split, the 
convolution operation on the above two branches is similar 
to the residual structure. Therefore, this paper reconstructs 
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the unit with a convolution stride of 1 using the residual 
structure. Finally, the element-wise addition operation 
ensures that the input features and output features have 
equal feature channels. 

Due to the use of a residual structure, the structure of a 
unit with a convolution stride of 1 violates the four 
principles mentioned above. This increase network 
parameters and memory access cost, which in turn affects 
the running speed of the network. However, residual 
structure can learn the difference between input and output 
and its unique skip structure [15], so it has the advantages of 
easy optimization, mitigation of gradient disappearance, 
protection of information integrity, etc. Therefore, using the 
residual structure can enhance network performance, 
thereby improving the recognition accuracy of the model for 
fire images. This is also a trade-off between speed and 
accuracy. 

B. Network architecture 

This paper uses the above r-shufflenetv2 unit to build the 
r-shufflenetv2 network, and its overall architecture follows 
the original shufflenetv2 architecture.  

As shown in Table Ⅰ, the first layer of the r-shufflenetv2 
network is composed of 3 3×  standard convolutions with 
24 convolutional filters. The second layer is the maxpooling 
layer, which reduces the feature size by downsampling. It 
helps to simplify the network complexity and reduce the 
amount of computation. The next few layers are composed 
of a series of r-shufflenetv2 units. These r-shufflenetv2 units 
are divided into three distinct stages according to the size of 
the input features. The convolution stride of the first 
r-shufflenetv2 unit in each stage is 2, and the convolution 
stride of the remaining units is 1. Within each stage, keep 
other hyperparameters unchanged. The last three layers 
consist of convolutional layers, global pooling layers, and 
fully connected (FC) layers. The purpose of convolution and 
global average pooling is to downsample the output features 
of the final stage into feature vectors of feature size 
1 1 1024× × . The purpose of the FC layer is to map this 
feature vector to two different outputs (fire and no fire). 

TABLE Ⅰ. Architecture of r-shufflenetv2 network 

Layer Output 
size KSize Stride Repeat Output 

channels 
Image 224×224 - - - 3 
Conv1 112×112 3×3 2 1 24 

MaxPool 56×56 3×3 2 1 24 

Stage2 
28×28 - 2 1 

116 28×28 - 1 3 

Stage3 
14×14 - 2 1 

232 
14×14 - 1 7 

Stage4 
7×7 - 2 1 

464 
7×7 - 1 3 

Conv5 7×7 1×1 1 1 1024 
GlobalPool 1×1 7×7 - - 1024 

FC - - - - 2 

Note that when stride=2, the sliding distance of each 
step of the convolution kernel on the feature map is 2. At 
this time, the size of the feature map is reduced to one-half 
of the original size. In addition, in CNN, the stride of the 
convolution generally does not exceed 3. This is because as 

the stride increases, the fewer features will be extracted; on 
the contrary, the more features will be extracted. 

III. EXPERIMENT 
This section mainly uses quantitative analysis and 

qualitative analysis to evaluate the recognition performance 
of the proposed network. In the quantitative analysis, three 
evaluation indexes are introduced, and the recognition 
accuracy and running speed of the proposed network are 
measured according to these evaluation indicators. In the 
qualitative analysis, the proposed network is used for forest 
fire image recognition, and the network performance is 
analyzed according to the recognition results. 

A. Qualitative analysis 
1) Evaluation indexes 
Accuracy: Accuracy represents the proportion of the 

number of samples correctly predicted to the total number of 
samples, calculated as follows: 

          
TP TNAccuracy

TP TN FP FN
+

=
+ + +

           (1) 

where TP is the number of true positive samples, 
representing the samples that belong to positive category 
and are correctly predicted. TN is the number of true 
negative samples, representing the samples that belong to 
negative category and are correctly predicted. FP is the 
number of false positive samples, which represents the 
samples that belong to negative category but are wrongly 
predicted as positive category. FN is the number of false 
negative samples, which represents the samples that belong 
to positive class but are wrongly predicted as negative class. 

The higher the value of accuracy, the better the model 
performance.  

F1 score: F1 score is an index to measure the correctness 
of positive prediction, which represents the proportion of 
positive samples among the samples marked as positive. F1 
score is regarded as a harmonic average of the model 
precision and recall, which ranges from 0 to 1. The 
calculation of F1 score is as follows: 

                  1 2 P RF
P R
×

= ×
+

               (2)  

                   
TPP

TP FP
=

+
                (3) 

                   
TPR

TP FN
=

+
                (4)   

where, P represents precision and R represents recall.                                    

The higher the value of F1 score, the better the model 
performance. 

FPS: FPS is the number of frames processed per second, 
calculated as follows: 

                 
frameFPS
time

=                 (5) 

It is generally believed that real-time recognition is 
achieved when the network is running above 20 FPS. 
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In this paper, accuracy and F1 score are used to measure 
the recognition accuracy of the network, and FPS is used to 
measure the processing speed of the network. 

2) Results analysis 
This paper uses the FLAME dataset to train and test the 

proposed r-shufflenetv2 network. The FLAME dataset is an 
aerial forest fire dataset developed in [14]. The dataset 
contains 47,992 images, divided into train set and test set. 
Images on the train set were acquired using a DJI Matrice 
200 UAV and Zenmouse X4S camera, and images on the test 
dataset were acquired using a DJI Phantom 3 UAV and its 
default camera. There is no overlap between training samples 
and test samples. This confirms that the method network in 
this paper is not biased towards the characteristics of the 
imaging device.  

In the experiments, data augmentation methods 
(including rotation, cropping, etc.) are used to address the 
imbalanced number of samples. The number of train is 40 
epochs, and batch size is 32. The Adam optimizer is used 
during training, and the learning rate is set to 0.001 and kept 
constant. All networks are trained and tested with Windows 
10 system using i7-9700k and Nvidia RTX 2080 Ti. Table Ⅱ 
reports the accuracy, F1 score and running speed of 
shufflenetv2 network and r-shufflenetv2 network on the 
FLAME dataset. 

TABLE Ⅱ. Accuracy, F1 score and running speed of shufflenetv2 and  
r-shufflenetv2 on the benchmark FLAME dataset. 

Performance 
Accuracy (%) 

F1 Score Running 
speed Train set Test set 

shufflenetv2 99.81 82.12 0.8544 34 FPS 
r-shufflenetv2 99.63 86.33 0.8908 31 FPS 

According to Table Ⅱ, on the benchmark FLAME train 
set, the recognition accuracy and F1 score of the 
r-shufflenetv2 network are slightly lower than those of the 
shufflenetv2 network. This shows that for the same imaging 
device, the recognition performance of the original 
shufflenetv2 network is slightly better. However, on the 
benchmark FLAME test set, the accuracy of the 
r-shufflenetv2 network is 4.21% higher than that of the 
shufflenetv2 network. This indicates that the proposed 
network has better generalization ability and its recognition 
effect is not biased towards the features of any imaging 
device. At the same time, it also shows that the robustness of 
the proposed network is better than that of the original 
shufflenetv2 network, so it is suitable for fire image 
recognition on different imaging devices. In addition, on the 
benchmark test set, the F1 score of the r-shufflenetv2 
network is higher than that of the shufflenetv2 network, 
which shows that r-shufflenetv2 can better balance the 
precision and recall of the model.  

Therefore, it can be concluded that the recognition 
performance of r-shufflenetv2 network is better than 
shufflenetv2 on the benchmark FLAME dataset. The main 
reason is the use of residual structure, which increases the 
feature expression ability of the network. 

As can be seen from Table Ⅱ, the running speed of the 
r-shufflenetv2 network is about 31 FPS. Although it is lower 
than the running speed of shufflenetv2 network, it also 

realizes real-time recognition. The reason why the running 
speed of the r-shufflenetv2 network is lower than that of the 
shufflenetv2 network is that the residual structure is used in 
the network construction, which increases the network 
parameters and memory access costs, and violates the design 
principles proposed in [10]. 

B. Qualitative analysis 
Fig. 3 shows the results of identifying aerial forest fire 

images using the r-shufflenetv2 network, in which the green 
boxes indicate some fire areas obscured by trees. 

(a) fire (b) fire

(c) fire (d) fire

(e) fire (f) non-fire

(g) non-fire (h) non-fire
Fig. 3. Recognition results of forest fire images. 

As can be seen from Fig. 3, the proposed network can 
identify some early forest flames and smoke, with the ability 
to distinguish fire images from non-fire images. Secondly, 
this method is sensitive to the recognition of fire areas 
covered by trees (as shown in Fig. 3(c)-3(e)). Finally, the 
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recognition results in Fig. 3(f) show that r-shufflenetv2 has 
the ability to distinguish forest smoke and fog. 

Quantitative and qualitative results show that the 
r-shufflenetv2 network is a well-performing fire recognition 
network that can be used to identify early forest fire images.  
Moreover, the r-shufflenetv2 network can realize real-time 
fire detection, and its processing speed reaches about 
31FPS. 

IV. CONCLUSION AND FUTURE WORK 
This paper proposes a real-time forest fire image 

recognition method based on r-shufflenetv2 network. The 
r-shufflenetv2 network is mainly composed of a series of 
r-shufflenetv2 units and is an improved version of the 
shufflenetv2 network. The r-shufflenetv2 unit contains two 
different structures, divided according to whether the 
convolution stride is 1 or 2. In order to improve the 
recognition accuracy, this paper uses a residual network to 
reconstruct the r-shufflenetv2 unit with a convolution stride 
of 1, thus enhancing the feature expression ability of the 
network. The experimental results show that the 
r-shufflenetv2 network is an excellent fire recognition 
model, which improves the accuracy of fire recognition on 
the benchmark FLAME dataset. The r-shufflenetv2 network 
achieves real-time fire detection with a recognition speed of 
about 31 FPS.  

In the future, we intend to deploy the proposed network 
in edge computing devices, such as UAV onboard counter 
processors, to realize real-time UAV-based fire image 
detection. On the other hand, we intend to process and fuse 
the fire information obtained by multiple sensors to improve 
the efficiency of forest fire detection. 
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