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A B S T R A C T   

In industrial process monitoring, it is always a challenging and practical problem to analyze the causes of the 
system fault by isolating true fault variables from vast amounts of process data. However, the phenomenon of 
smearing effect occurs by using the traditional contribution analysis-based isolation methods since the defined 
isolation indices of different variables affect each other. In this paper, a new fault isolation method is proposed 
based on local outlier factor and improved k-nearest neighbor rule aiming to improve the isolation accuracy. 
Firstly, the nearest neighbors of each sample are obtained along the direction of a specific variable. Based on the 
nearest neighbors, the outlier-degree value of the variable is calculated and regarded as the contribution of the 
variable. Then, the contribution of the variable in all samples are obtained in the same way, among which the 
maximum one is selected as the isolation threshold value of this variable. During the online monitoring, the 
contribution of the variable in the newly collected sample is calculated in real time. Once the contribution is 
greater than the threshold, the variable is judged to be the dominant factor causing the system fault. Two cases 
on numerical example and Tennessee Eastman process are conducted to evaluate the effectiveness of the pro
posed method.   

1. Introduction 

The monitoring of the process variables is of great significance for 
regulating working conditions and ensuring product quality in industrial 
processes. In the field of process monitoring, fault detection, fault 
isolation, fault diagnosis, and fault prognosis are usually studied. Fault 
isolation involves identifying certain variables causing a fault from all 
monitored variables after the fault is detected [1–3]. 

The traditional fault isolation method is based on contribution 
analysis (CA) in the framework of principle component analysis (PCA) 
[4–9], including complete decomposition contribution (CDC), 
reconstruction-based contribution (RBC), partial decomposition contri
bution (PDC), diagonal contribution (DC), and angle-based contribution 
(ABC) [10–13]. In these CA-based fault isolation methods, data is 
generally by assuming to follow a specific distribution. For instance, it is 
assumed that data obey multidimensional Gaussian distribution. How
ever, it is hard to meet the Gaussian distribution condition in practice. 
On the other hand, variable contributions are constructed to isolate the 
fault variable from the monitored data. Generally, variable 

contributions are computed by indicators like Hotelling’s T-squared 
(T2), squared prediction error (SPE), and the combined index φ. Then, 
the variable with the biggest contribution value is regarded as the fault 
variable. However, it is illustrated that inaccurate isolation may occur in 
the traditional CA-based isolation methods. The reason is that the 
contribution magnitude of fault-free variables may be amplified since 
the computation of the variable contribution is related with all the 
original variables. This is the so-called phenomenon of the smearing 
effect [14]. For example, in fault case, the change of certain variable 
might affect the contribution value of the other normal variables. This 
leads to the possibility that the contributions of the affected normal 
variables may exceed that of the true fault variables, thereby resulting in 
inaccurate isolation [15]. 

Hence, to reduce the negative impact of smearing effect on isolation 
results in the CA-based methods, some improved methods are proposed. 
In [6], an adaptive PCA-based detection and isolation method is 
designed for incipient faults, which is suitable for non-Gaussian indus
trial fault type and has high isolation efficiency. In [16], a modified 
isolation approach based on distributed kernel principal component 
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regression (DKPCR) is proposed, which can quickly isolate the 
fault-related variables by alleviating the smearing effect. In [17], a new 
dynamic PCA-based fault detection and isolation method is proposed 
where the fault is isolated by calculating the variable relative contri
bution. In [18], a novel fault detection and isolation approach based on 
the structured joint sparse PCA is designed, where a new score index is 
used to locate and isolate fault variable. However, misdiagnosis still 
occurs in above mentioned methods since the problem of smearing effect 
cannot be fundamentally solved due to the inherent characteristic of the 
CA-based isolation methods. In addition, the fault isolation ability in the 
presence of multiple fault variables is not considered in the above 
traditional CA-based methods. Furthermore, the isolation threshold is 
not defined for the variable contribution, which may lead to ambiguous 
decisions. 

To overcome the above issues, some new data-driven methods are 
proposed [19–24]. In [21], a neural networks-based method is designed 
with application to internal combustion engine fault isolation. Both 
single fault variable and multiple fault variables can be accurately 
detected and isolated. However, a large amount of prior information 
about fault is hard to obtain for the model training. In [23], k-nearest 
neighbor (kNN) reconstruction is proposed for fault isolation, which 
combines the kNN-based prediction and reconstruction-based method to 
enhance isolability of the fault variable. But these methods lack theo
retical analysis of the isolability. In [24], a fault isolation scheme using 
classification and regression tree is proposed, which is applied for steam 
boilers to isolate fault variables. As a supervised machine learning-based 
method, lots of prior information about the process fault are needed for 
the training of the model. However, in the practical industrial process, 
unknown faults become more likely to occur. The prior fault information 
is usually difficult to obtain. Furthermore, theoretical analysis of the 
isolability is necessary for the isolation method. 

In this paper, a new isolation method using outlier-degree-based 
variable contributions is proposed. The smearing effect can be elimi
nated, and the isolation accuracy is improved using the proposed 
method. In addition, no prior information of the fault is required. Hence 
the proposed method can be potentially applied to a more practical in
dustrial scenario. Furthermore, detailed theoretical analysis of isol
ability for fault variables is also provided in both cases of single and 
multiple fault variables. The numerical example and Tennessee Eastman 
(TE) process are used to demonstrate the performance of proposed 
method. The results indicate that the proposed method can efficiently 
isolate fault variables. The main contributions of this paper are as 
follows. 

1) A new fault isolation strategy is proposed where variable contribu
tion is defined from the perspective of the spatial distance between 
variables. This idea is different from the traditional CA-based 
methods where the contribution indicator of variables is prone to 
interfere with each other. In the proposed method, a new contribu
tion indicator defined in the original measurement space is used to 
evaluate the likelihood that a variable is a faulty variable. And the 
isolation threshold value of the variable contribution is explicitly 
proposed which is more convenient to make the decision for fault 
variable isolation.  

2) The variable contribution is obtained by calculating the outlier- 
degree relative to the k-nearest neighbor of the variable. The near
est neighbors are searched along the direction of a specific variable 
with improved k-nearest neighbor (IkNN) rather than in the whole 
space of the sample with the kNN, which can significantly reduce 
computational complexity.  

3) The proposed method can be applied to the cases of single and 
multiple fault variables. In both cases, detailed theoretical analysis of 
isolability for fault variables is given. Case studies on numerical 
examples and TE process are also provided. The effectiveness of the 
proposed method is demonstrated theoretically and experimentally. 

The remainder of this paper is organized as follows. The introduction 
of fault isolation based on CA methods, local outlier factor algorithm, 
kNN algorithm, and IkNN algorithm are given in Section 2, respectively. 
The main content of the proposed isolation strategy is given in Section 3. 
Detailed theoretical derivation and analysis of the isolability for fault 
variables are provided in Section 4. Simulations on the numerical 
example and TE process are conducted to verify the isolating perfor
mance of the proposed method in Section 5. Section 6 concludes the 
paper. 

2. Preliminaries 

In this section, fault isolation based on contribution analysis 
methods, local outlier factor algorithm, and k-nearest neighbor algo
rithm are introduced. Besides, an improved k-nearest neighbor algo
rithm is proposed. The key ideas of the local outlier factor algorithm and 
improved k-nearest neighbor algorithm are used in the following pro
posed fault isolation method. 

2.1. Fault isolation based on CA methods 

The CA methods are defined based on the fault detection indices of 
PCA. The true faulty variables can be identified by computing a quantity 
which represents the contribution from each variable to the indices. The 
fault detection indices of PCA are introduced first. 

Given the dataset matrix X =
[
X1,…, Xn]T

∈ Rn×m consisting of n 
samples, each sample Xi =

(
xi

1,…, xi
m
)

is composed of m measured 
variables. Each variable in X is usually scaled to zero mean and unit 
variance. Then, the covariance matrix S is decomposed by eigenvalue 
decomposition, obtaining. 

S =
1

n − 1
XTX =

[
P P̃

][ Λ0
0 Λ̃

][
P P̃

]T
(1)  

where the columns of P ∈ Rm×l are associated with the first l largest ei
genvalues of diagonal matrix Λ ∈ Rl×l, and the columns of P̃ ∈ Rm×(m− l)

are associated with the rest (m − l) largest eigenvalues of diagonal matrix 
Λ̃ ∈ R(m− l)×(m− l). 

The commonly used detection indices of PCA are T2, SPE, and the 
combined index φ. For simplicity, a unified index is introduced [14]. 

Index(x) =
⃦
⃦M1/2x

⃦
⃦2

2 = xTMx. (2) 

This unified index becomes T2, SPE, and combined index φ when 

M = PΛ− 1PT, M = P̃P̃
T
, and M =PΛ− 1PT/τ2 + P̃P̃

T
/δ2, respectively, 

where τ2 and δ2 are control limit of T2 and SPE, respectively [12]. Next, 
two typical fault isolation methods based on CA are briefly introduced. 

1) CDC: The unified formula of CDC is defined as [12]. 

CDCi(x) = (ξT
i M1/2x)2 (3)  

where ξi is the ith column of identity matrix. The sum of CDCi is equal to 
the corresponding detection index, i.e., 

∑m
i=1CDCi(x) = Index(x). 

2) RBC: The variable contributions are defined as the amount of the 
reconstruction of indices along with one of the variable directions, and 
more detailed information about RBC can be found in [15]. 

RBCi(x) =
(
ξT

i Mx
)2
/

ξT
i Mξi (4)  

where ξi is a possible fault direction. 
However, from the definitions in Eqs. (3) and (4), it can be inferred 

that any change of a variable can cause changes of all the variable 
contributions because the defined variable contribution is related to all 
the original variables. This is the so-called phenomenon of smearing 
effect, which would lead to misdiagnosis. 
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2.2. Local outlier factor (LOF) algorithm 

The LOF method is an outlier detection algorithm based on relative 
density, which uses local outlier factor index to measure the outlier 
degree of the sample [25]. It is widely used for fault detection in in
dustrial processes [26–29]. Given the dataset matrix 
X =

[
X1,…, Xn]T

∈ Rn×m consisting of n samples, where each sample Xi 

=
(
xi

1,…, xi
m
)

is composed of m measured variables, the principle of LOF 
algorithm is as follows. 

(1) The nearest neighbors of sample Xi in dataset matrix X is 
searched based on the Euclidean distance, achieving the dataset N(Xi)

N
(
Xi) =

[
Xi1,Xi2,…,Xil,…,XiK]T

, l = 1, 2,…,K (5)  

where K is a hyperparameter denoting the number of the nearest 
neighbors of Xi. In addition, the Euclidean distance between Xi and 
Xil is defined by d

(
Xi,Xil)

d
(
Xi,Xil) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
xi

j − xil
j

)2
√
√
√
√ , j = 1,2,…,m (6)  

where xi
j is jth variable in sample Xi and xil

j is the jth variable of sample 

Xil.. 
(2) The nearest neighbor sets of Xil can be obtained by the same way. 

The kth distance of Xil, kd
(
Xil), is Euclidean distance between Xil and its 

kth nearest neighbor Xilk, given as 

kd
(
Xil) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
xil

j − xilk
j

)2
√
√
√
√ (7) 

(3) Then, the reachable distance Rd from Xi to each nearest neighbor 
sample in N

(
Xi) is calculated by 

Rd
(
Xi,Xil) = max{d

(
Xi,Xil), kd

(
Xil)} (8) 

For convenience of the description of the above distances, Fig. 1 is 
presented where K and k are both set to be 3. The sample Xi1, Xi2, and 
Xi3, are the three nearest neighbors of sample Xi, respectively. Then, 
d
(
Xi,Xi1), d

(
Xi,Xi2) and d

(
Xi,Xi3) are the Euclidean distance between Xi 

and Xi1, Xi2, Xi3, respectively. Assuming that samples Xi13, Xi23, and 
Xi33 are the third nearest neighbor of samples Xi1, Xi2, and Xi3, respec
tively, kd

(
Xi1), kd

(
Xi2), kd

(
Xi3) are obtained as the third distance of Xil. 

Finally, the reachable distance Rd
(
Xi,Xil) is achieved by selecting the 

maximum one between d
(
Xi,Xil) and kd

(
Xil). 

(4) Based on the above distances, the LOF value can be calculated. 
Firstly, the local reachability density (LRD) ρ for sample Xi is obtained 

by inverting average of reachable distance 

ρ(Xi) =
1

1
K
∑K

l=1
Rd

(
Xi,Xil)

(9) 

Then, the LOF of sample Xi is calculated by dividing the average LRD 
of its K neighbors by the LRD of itself, achieving 

LOF(Xi) =
1
K

ΣK
l=1ρ(Xil)

ρ(Xi)
(10) 

The LOF value of each training sample Xi, i = 1,…, n is calculated by 
the same way. Usually, for a normal sample, the LOF value is generally 
less than or close to 1, which means that its local reachable density is 
close to that of its nearest neighbors. Thus, the sample and its neighbors 
belong to the same cluster. While, if LOF value of a sample is much 
greater than 1, it is highly likely that the sample is an outlier. 

The distribution of LOF can be determined by kernel density esti
mation [30,31], and the upper quantile of the distribution correspond
ing to the confidence α is used as the control limit, CLOF, of the detection 
model. In real-time fault detection, LOF value of a test sample Xt is firstly 
calculated by the same method. Then, LOF(Xt) value of the sample is 
comparing with the control limit CLOF. If LOF(Xt) > CLOF, the sample Xt 

is judged as an abnormal outlier sample. 

2.3. kNN algorithm 

The kNN rule was initially proposed for the classification problems. 
It was extensively applied to fault detection in industrial processes 
[32–34]. For kNN-based fault detection method, the Euclidean distance 
d
(
Xi,Xil) from Xi to each nearest neighbor sample is firstly calculated by 

the same method as shown in Eq. (6). Then, the mean of the square of 
Euclidean distance from Xi to its nearest neighbors Xil(l = 1,…,K) is 
calculated by 

D2(Xi) =
1
K
∑K

l=1
d2( Xi,Xil) (11)  

where D2 is known as the kNN distance of the sample Xi. 
The D2 value of each training sample Xi is computed by the same 

method. The distribution is determined by methods such as kernel 
density estimation. The upper quantile of the distribution corresponding 
to the confidence α is used as the control limit D2

c of the detection model. 
In real-time detection, the D2 value of test sample Xt is computed. Then, 
D2(Xt) is compared with control limit D2

c . If D2(Xt) > D2
c , the sample Xt is 

judged as an abnormal sample. 
Remark 1. The LOF and kNN algorithms are commonly used for fault 

detection in industrial processes by measuring distance between normal 
and fault samples in the measurement space. For fault detection, only 
the fault samples are detected, while the exact variable leading to the 
system fault cannot be distinguished. For industrial applications, fault 
isolation (i.e., the location of fault source) is usually with practical 
meanings for process operators to improve the process security and 
product quality by regulating working condition. Hence, the location of 
the faulty source is of great importance and necessity. In this paper, 
inspired by the basic idea of LOF and kNN algorithms, we expanded 
them to isolate the fault variable from sample. Besides, to improve the 
computational efficiency, the search direction is modified for deter
mining the nearest neighbors in kNN rule. 

2.4. Improved kNN algorithm 

In traditional kNN rule, the k nearest neighbors of one sample are 
obtained by calculating and sorting Euclidean distances between sam
ples in training dataset. The Euclidean distance between one sample and 

Fig. 1. Schematic diagram of the reachable distance Rd (K= k = 3).  
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Fig. 2. The difference between kNN rule and IkNN rule (k = 6).  

Fig. 3. Block diagram for the proposed fault isolation strategy.  
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another sample is computed by the sum of squared differences of m 
variables [32–34]. In this paper, the k nearest neighbors of one sample 
are searched along the direction of specific variable in the original 
measurement space. The Euclidean distance between two samples is 
computed by the squared difference of the specific variable in the two 
samples. 

Taking two-dimensional data as an example, the difference between 
the traditional kNN rule and improved kNN rule is expressed in Fig. 2. k 
is set to 6, and the red point X represents a test sample. The remaining 
black dots are training samples. According to kNN rule, the samples in 
the green round frame are the nearest neighbors of X. While, according 
to improved kNN rule, samples in the blue and purple rectangular boxes 
are the nearest neighbors of X in the direction of variable 1 (namely x1) 
and variable 2 (namely x2), respectively. According to the above anal
ysis, lower computational complexity is preferred for the improved kNN 
rule compared with traditional kNN rule. 

3. The proposed fault isolation method 

The main idea of the proposed method is shown in Fig. 3. Firstly, the 
nearest neighbors on each training sample space are obtained using the 
improved kNN rule along the direction of a specific variable, aiming to 
reduce computational complexity. The outlier-degree-based variable 
contributions are then calculated using the LOF of the variable. The 
contributions of other variables are obtained in the same way, among 
which the maximum one is selected as the isolation threshold value of 
the corresponding variable. In the process of online monitoring, the 
contribution of the monitored variables is calculated in real time. Once 
the contribution of variable is larger than the isolation threshold value, 
this variable is judged to be the dominant factor causing the corre
sponding sample faults. Finally, detailed derivation and analysis of 
isolability for fault variables are given in the presence of single and 
multiple fault variables. 

The detailed procedures of the proposed fault isolation strategy are 
as follows: 

Step 1. Finding the nearest neighbors along the direction of certain 
variable. 

Along the direction of xi
j (namely the direction of the jth variable), 

the nearest neighbor dataset (N
(
Xi) =

[
Xi1,Xi2…Xil…XiK]T) of 

sample Xi in offline dataset X based on the Euclidean distance is 
searched. The nearest neighbor dataset of every sample in the neighbors 
of the Xi, that is Xil, is computed as well. 

Step 2. Calculating reachable distance and local reachability density. 
The square of the Euclidean distance between the jth variable of Xil 

and that of its kth nearest neighbor Xilk is obtained by 

k2
d

(
xil

j

)
=

(
xil

j − xilk
j

)2
(12) 

Then, the reachable distances between variable xi
j of sample Xi and 

variable xil
j of the lth nearest neighbor sample Xil (l = 1, 2, …, K) are 

expressed as: 

Rd

(
xi

j, x
il
j

)
=

∑K

l=1

max{k2
d

(
xil

j

)
, d2

(
xi

j, x
il
j

)
} (13) 

Meanwhile, the local reachability density ρ of variable xi
j is calcu

lated by 

ρ(xi
j) =

1

1
K
∑K

l=1
Rd

(
xi

j, xil
j

) (14) 

Step 3. Calculating local outlier factor. 
The LOF of variable xi

j which is treated as the contribution value of 
variable xi

j is calculated by 

cLOF
ij = LOF(xi

j) =
1
K

ΣK
l=1ρ(xil

j )

ρ(xi
j)

(15) 

Remark 2. LOF is a classification method which is usually used for 
abnormal data analysis. If each object is assigned to a degree of being an 
outlier, this degree is called the LOF of the object. Inspired by this idea, a 
new variable contribution indicator is proposed based on outlier-degree 
of variable, which will be used to judge the possibility of a variable being 
the fault variable. The LOF of the variable is calculated by regarding the 
variable as a one-dimensional sample. Then the LOF value can be 
considered as the contribution of the variable, that is the so-called 
outlier-degree-based variable contributions. This makes it possible to 
achieve contribution-based fault variable isolation using the idea of LOF. 

Step 4. Determining isolation threshold value. 
The contribution of variable xi

j in training dataset is calculated and 
the contribution matrix is achieved as 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cLOF
11 cLOF

12 ⋯ cLOF
1j ⋯ cLOF

1m

cLOF
21 cLOF

22 ⋯ cLOF
2j ⋯ cLOF

2m

⋮ ⋮ ⋱ ⋯ ⋱ ⋮
cLOF

i1 cLOF
i2 ⋯ cLOF

ij ⋯ cLOF
im

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
cLOF

n1 cLOF
n2 ⋯ cLOF

nj ⋯ cLOF
nm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)  

where cLOF
ij represents the contribution of the jth variable xi

j of the ith 
sample Xi. The empirical method [14] is used to determine the isolation 
threshold value. Then, the isolation threshold value of each variable is 
selected by the maximum value of each column in the matrix in Eq. (16). 

Remark 3. Generally, threshold value for one variable contribution 
is utilized to indicate the fluctuation of the variable contribution value 
under normal operating conditions. This signifies that the contributions 
of fault variables should be greater than contributions of the normal 
variables. The isolation threshold value of each variable is selected 
usually by the empirical method. The maximum contribution of corre
sponding variable among all the normal samples is chosen as the isola
tion threshold value. Therefore, the maximum value from each column 
of Eq. (16) is selected as the threshold value for the contribution of 
corresponding variable. 

Step 5. Online fault isolation. 
The LOF(xt

j) value of each variable xt
j(j = 1, 2,…,m) for test sample 

Xt =
(
xt

1,…, xt
m
)

is calculated by the same method in Eq. (17). 
Comparing the LOF(xt

j) value with the isolation threshold value, if 
LOF(xt

j) is greater than isolation threshold value, the variable xt
j is 

considered to be a fault variable, otherwise it is a normal variable. The 
detailed expression of LOF(xt

j) is shown as: 

LOF
(

xt
j

)
=

1
K

ΣK
l=1ρ(xtl

j )

ρ
(

xt
j

) =
Rd

(
xt

j

)

K
∑K

l=1Rd

(
xtl

j

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γxtl
j

∑K

l=1
d2
(

xt
j , x

tl
j

)
,Rd

(
xtl

j

)
< d2

(
xt

j , x
tl
j

)

γxtl
j

∑K

l=1
Rd

(
xtl

j

)
,Rd

(
xtl

j

)
≥ d2

(
xt

j , x
tl
j

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γxtl
j

∑K

l=1
(xt

j − xtl
j )

2
, Rd

(
xtl

j

)
< d2

(
xt

j , x
tl
j

)

γxtl
j

∑K

l=1

(
(xtl

j − xtlk
j )

2)
,Rd

(
xtl

j

)
≥ d2

(
xt

j , x
tl
j

)

(17)  

with 
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Rd

(
xt

j

)
=

1
K
∑K

l=1

Rd

(
xt

j , x
tl
j

)
(18)  

Rd

(
xtl

j

)
=

1
K
∑K

l=1
Rd

(
xtl

j , x
tlk
j

)
(19)  

where γxtl
j
= K

∑K
l=1Rd

(
xtl

j

)
is a constant and xtlk

j represents jth variable of 

kth nearest neighbor of Xtl along the direction of xtl
j . 

Remark 4. The contribution is computed by the local outlier factor of 
each variable, based on which a new fault isolation method with an 
explicit isolation threshold value is achieved. It is uninfluenced by the 
smearing effect since variable contribution defined in the original 
measurement space is only related to one corresponding variable and 

will not be affected by other variables. Then the impact of smearing 
effect can be reduced significantly. 

The complete fault isolation procedure is presented in Fig. 4 
including offline modeling and online isolation. The training dataset X 
consisting of offline samples Xi is used in offline modeling. The nearest 
neighbors of every sample are searched along the direction of the spe
cific variable. Then, the reachable distance and reachable density of 
every variable in the sample are calculated according to Eqs. (13)-(14). 
The LOF values of variables are obtained by Eq. (15) and isolation 
threshold value is achieved by selecting the maximum one. In the pro
cess of online isolation, once the test sample is obtained, the nearest 
neighbors of the sample in the new dataset [X,Xt ] generated by adding 
the new test sample are searched along the specific variable direction. 
The reachable distance and reachable density of every variable in the 
sample are calculated, based on which the LOF value for every variable 
is obtained in real time. Comparing the LOF value of xt

j with the corre
sponding isolation threshold value, if LOF(xt

j) is greater than the isola
tion threshold of xt

j , the jth variableis regarded to be a fault variable. 
Otherwise, it is a normal variable. 

It can be inferred from above procedures that the complexity of 
proposed method is largely related to the way neighbors are searched. 
Assuming that, in a high-dimensional space, d is the dimension of 
sample, and n is the number of training samples, then, computational 
complexity for each distance is O(d). The computational complexity of 
traditional k-nearest neighbor is O(dn2

). While the computational 
complexity of the improved k-nearest neighbor proposed in this paper is 
O(n2). Therefore, the computational complexity can be reduced signif
icantly with the modified nearest neighbor rule. 

Training dataset X

Search k nearest neighbors  
along the direction of the 

variable

Calculate reachable distance and 
reachable density of variable 
according to Eqs. (13)-(14)

Calculate the LOF value of  
variable according to Eq. (15)

Determine the control limit 
(LOFcj) for each variable by Eq. 

(16)

Offline modeling

Test sample Xt

Search k nearest neighbors in [X, 
Xt]along the direction of the jth 

variable(j=1,2,…,m)

Compute the reachable distance 
and reachable density of jth

variable in real time

Compute the LOF value of jth
variable in real time

Online isolation

LOF(xt
j)>LOFcj

Yes

The jth variable is faulty variable

No

t = t + 1

Fig. 4. The procedure of proposed fault isolation strategy.  

Fig. 5. Two-dimensional example for Case 1.  
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4. Isolability analysis of the proposed method 

In this section, the isolability of the designed fault isolation method is 
analyzed considering the single and multiple additive faults. 

4.1. Isolability analysis in the presence of the single additive fault 

The isolability in the presence of the single fault is firstly analyzed 
and the additive fault is shown as 

Xt = X∗t + ξpfp (20)  

where X∗t is the fault-free measurement, ξp is a column vector denoting 
fault direction (i.e., the pth column of the identity matrix), and fp is 
fault magnitude. According to whether the nearest neighbor datasets of 
the faulty sample are the same as that of the normal sample, two cases 
are considered. In both cases, ξp is the same as the direction of fault 
variable x1. 

Case 1. In Fig. 5, along the direction of fault variable x1, the faulty 
sample Xt (the red triangle) and the normal sample X∗t (the blue 
triangle) have the same nearest neighbor dataset, i.e., the samples in the 
blue rectangular box. The neighbor dataset is obtained along the di
rection of fault variable x1. The other samples (the black dot ‘.’) are 
normal samples. All samples in Figs. 5–8 are two-dimensional data, 
which can be expressed as (x1,x2). 

According to Eq. (17) and assuming that the fault magnitude is much 
greater than the distance between a variable and its neighbors, i.e., 
⃒
⃒
⃒fp

⃒
⃒
⃒≫

⃒
⃒
⃒x∗t

j − xtl
j

⃒
⃒
⃒, the contribution value of variable xt

j is obtained by 

LOF
(

xt
j

)
= γxtl

j

∑K

l=1

(
x∗t

j − xtl
j + ξT

j ξpfp

)2

≈ γxtl
j

∑K

l=1

(
ξT

j ξpfp

)2

= Kγxtl
j
((ξT

p fp)i)
2

=

⎧
⎨

⎩

Kγxtl
j
(fp)

2
, p = j

0, p ∕= j

(21)  

where γxtl
j
= 1/K

∑K
l=1Rd

(
xtl

j

)
is a constant, x∗t

j − xtl
j is approximately 

zero due to same nearest neighbor dataset of faulty sample Xt, and the 
normal sample X∗t. 

The premise of the approximate equation is that fault magnitude is 
much greater than the distance between a variable and its neighbors, i. 

e., 
⃒
⃒
⃒fp

⃒
⃒
⃒≫

⃒
⃒
⃒x∗t

j − xtl
j

⃒
⃒
⃒. Note that the difference 

⃒
⃒
⃒ x∗t

j − xtl
j

⃒
⃒
⃒ is exceedingly tiny 

since fault-free part x∗t
j can be considered as normal values like xtl

j , then 
above hypothesis is reasonable. Therefore, the result demonstrates that 
the contribution of fault variable is increased while that of normal 
variables almost unchanged in the case of single additive fault using the 
proposed method. Hence, it can be regarded that the smearing effect is 
reduced significantly. 

Case 2. As shown in Fig. 6, along the direction of fault variable x1, the 
faulty sample Xt (the red triangle) and the normal sample X∗t (the 
blue triangle) have different nearest neighbor dataset. Their nearest 
neighbor datasets are the samples in the blue and cyan rectangular box, 
respectively. The cyan triangle Xnew is the sample after translation of 
X∗t along the fault variable x1 direction. The other samples (the black 
dot ‘.’) are normal samples. 

The contribution value of variable xt
j is calculated according to Eq. 

(17). 

LOF(xt
j) = γxtl

j

∑K

l=1

(
x∗t

j − xtl
j + ξT

j ξpfp

)2
(22)  

where x∗t
j − xtl

j is no longer approximately zero due to different nearest 
neighbor dataset of faulty sample Xt and the normal sample X∗t . To 
eliminate redundant terms in Eq. (22), X∗t is translated along the di
rection of fault variable x1. Then, Xnew and faulty sample Xt have the 
same nearest neighbor dataset, i.e., the samples in the cyan rectangular 
box. The translation process is mathematically expressed in the 
following form 

Fig. 6. Two-dimensional example for Case 2.  

Fig. 7. Two-dimensional example for Case 3.  

Fig. 8. Two-dimensional example for Case 4.  
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Xt = Xnew + ξpf
new
p (23)  

where 

fnew
p = fp − ξT

p (X
new − Xt) (24) 

Then Eq. (18) can be transformed into the following form under the 

assumption that 
⃒
⃒
⃒fnew

p

⃒
⃒
⃒≫

⃒
⃒
⃒xnew

j − xtl
j

⃒
⃒
⃒

LOF(xt
j) = γxtl

j

∑K

l=1

(
xnew

j − xtl
j + ξT

j ξpf
new
p

)2

≈ γxtl
j

∑K

l=1

(
ξT

j ξpf
new
p

)2

= Kγxtl
j
(ξT

j ξpf
new
p )

2

=

⎧
⎨

⎩

Kγxtl
j
(fnew

p )
2

, p = j

0 , p ∕= j

(25) 

The derivation procedure and results are similar to Case 1. Therefore, 
the same conclusion can be inferred from Eq. (25). 

4.2. Isolability analysis in the presence of the multiple additive faults 

The isolability in the presence of the multiple variables fault is 
analyzed. For simplicity and without loss of generality, the case with two 
fault variables is analyzed. The fault is assumed as 

Xt = X∗t + ξpfp + ξqfq (26)  

where X∗t is fault-free measurement, ξp and ξq are column vectors 
denoting fault direction (namely the pth, qth column of identity matrix), 
and fp is fault magnitude. According to whether the nearest neighbor 
datasets of the faulty sample and the normal sample are the same, there 
are two cases. In the following two cases, ξp is the same as to the di
rection of fault variable x1, ξq is the same as to the direction of fault 
variable x2. 

Case 3. In Fig. 7, along the direction of fault variables x1 and x2, the 
faulty sample Xt (the red triangle) and the normal sample X∗t (the blue 
triangle) have the same nearest neighbor dataset, respectively, i.e., the 
samples in two different blue rectangular boxes. The other samples (the 
black dot ‘.’) are normal samples. 

The contribution value of variable xt
j is calculated according to Eq. 

(17). 

LOF(xt
j)= γxtl

j

∑K

l=1

(
x∗t

j − xtl
j + ξT

j ξpfp + ξT
j ξqfq

)2

≈ γxtl
j

∑K

l=1

(
ξT

j ξpfp + ξT
j ξqfq

)2
),

⃒
⃒
⃒fp

⃒
⃒
⃒≫

⃒
⃒
⃒x∗t

j − xtl
j

⃒
⃒
⃒and

⃒
⃒
⃒fq

⃒
⃒
⃒≫

⃒
⃒
⃒x∗t

j − xtl
j

⃒
⃒
⃒

= Kγxtl
j

(
ξT

j ξpfp + ξT
j ξqfq

)2

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Kγxtl
j

(
fp

)2
, p= j

Kγxtl
j

(
fq

)2
, q= j

0 ,p∕= jandq∕= j

(27) 

The approximate equation is based on the same hypothesis in the 
presence of the single additive fault. In the case of multiple additive 
faults, it can be observed that the contribution of fault variables in
creases while that of the normal variables is almost unchanged. Note 
that such a result can be applied to the case of three or more fault var
iables as well. Furthermore, it can be proven again that the variable 
contributions of multiple additive faults case are only related with cor
responding variables. The smearing effect is reduced significantly. 

Case 4. In Fig. 8, along the direction of fault variable x1 and x2, the 
faulty sample Xt (the red triangle) and the normal sample X∗t (the blue 
triangle) have different nearest neighbor dataset. The sample after 
translation of X∗t along the direction of fault variables x1 and 
x2 respectively is Xnew1, Xnew2 (the two green triangles). And the 
sample after two translations of X∗t along the direction of fault variables 
x1 and x2 is Xnew (the cyan triangle). The other samples (the black dot 
‘.’) are normal samples. 

The contribution value of variable xt
j is calculated according to Eq. 

(17). 

LOF(xt
j) = γxtl

j

∑K

l=1

(
x∗t

j − xtl
j + ξT

j ξpfp + ξT
j ξqfq

)2
(28)  

where x∗t
j − xtl

j is no longer approximately zero due to different nearest 
neighbor dataset of faulty sample Xt and the normal sample X∗t . To 
eliminate redundant terms in Eq. (28), Xt is translated twice along the 
direction of fault variables x1 and x2. After the translation, the new 
sample Xnew (the cyan triangle) and faulty sample Xt have the 
same nearest neighbor dataset, their nearest neighbor datasets are 
composed of the samples in the two cyan rectangular boxes as shown in 
Fig. 8, respectively. The translation process is mathematically expressed 
in the following form 

Xt = Xnew + ξpf
new
p + ξqf

new
q (29)  

fnew
p = fp − ξT

p
(
Xnew1 − X∗t), fnew

q = fq − ξT
q
(
Xnew2 − X∗t) (30) 

Then Eq. (28) can be transformed into the following form 

LOF(xt
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2

=
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(31)  

where 
⃒
⃒
⃒fnew

p

⃒
⃒
⃒≫

⃒
⃒
⃒xnew

j − xtl
j

⃒
⃒
⃒&

⃒
⃒
⃒fnew

q

⃒
⃒
⃒≫

⃒
⃒
⃒xnew

j − xtl
j

⃒
⃒
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The derivation procedure and result are similar to Case 3. Therefore, 
the same conclusion can be reached from Eq. (31). 

5. Case studies 

To evaluate the performance of the proposed fault isolation method, 
2 cases are studied including a numerical example and the typical in
dustrial process benchmark called Tennessee Eastman process. 

5.1. Numerical example 

The dataset under normal operating condition is generated by the 
model described in Eq. (32) [12]. 

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 0.3441 0.4815 0.6637
− 0.2313 − 0.5936 0.3545
− 0.5060 0.2495 0.0739
− 0.5552 − 0.2405 − 0.1123
− 0.3371 − 0.3822 − 0.6115
− 0.3877 − 0.3868 0.2045

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
t1
t2
t3

⎤

⎦+ noise (32)  

where random variables t1, t2, and t3 are within [0,1], [0, 1.6], and [0, 
1.2], respectively. They are all uniformly distributed. The noise is nor
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mally distributed with zero mean and variance of 0.2. The numbers of 
generated training data are 500. These training data are used to 
construct the fault isolation model and determine isolation threshold 
value. 

To compared with other methods, several CA-based methods are also 
conducted including RBC and CDC methods. In these methods, the 
number of principal components is set to three, which can ensure that 
the rate of the contributions of the principal components is larger than 
80 %. The statistic indices used to compute the variable contribution are 
T2, SPE, and φ with a tolerance level equal to 5 % (i.e., α = 0.05). The 
number of nearest neighbors is set to K = k = 8. The choice of the values 
of K and k is usually determined based on experience. If the value of K or 
k is too large, the computational complexity increases. If the value of K 
or k is too small, the isolation results will be greatly affected by noises. 
Therefore, a practical approach is to try different values of K or k on 

training data and determine an appropriate value by cross validation 
[32]. 

5.1.1. Fault isolation result in the presence of single fault 
In the case of single fault, the fault is added by Xt = X∗t + ξpfp, where 

the fault direction ξp is uniformly distributed among the six possible 
directions and the fault magnitude fp is a random number uniformly 
distributed in the range of [0,5]. The uniformly distributed ξp represents 
any one variable possibly as a fault variable. The uniformly distributed fp 

denotes that the fault magnitude is practically and more likely to be a 
random value rather than a fixed value. Similar settings can be found in 
other references [12,14]. Under this assumption, 500 fault samples are 
generated. 

The fault isolation performance of different methods is shown in 
Table 1. 

Table 1 
Comparison results of fault isolation rate for single fault.  

Index SPE T2 φ 

CDC (%) 70.8  75.6 93.8 
RBC (%) 91.6  62.4 95.2 
The proposed method (%) —  94.0 —  

Fig. 9. Fault isolation results of variables 1 to 6 using different methods.  

Table 2 
Fault isolation rate for multiple faults.  

Index SPE T2 φ 

CDC (%) 6.4  4.2 7.8 
RBC (%) 15.0  18.6 51.2 
The proposed method (%) —  86.0 —  
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Fig. 10. Fault isolation results of variables 1–6 using the proposed method.  

Fig. 11. Fault isolation results of variables 1–6 using the CDC-φ method.  
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In Table 1, the fault isolation rate (FIR) is used to assess the perfor
mance of these methods. The value of FIR is computed by diving the 
number of the correctly isolated samples Xci by the number of the fault 
samples Xtotal, i.e., FIR = Xci

Xtotal
. When the RBC with SPE is applied to 

identify fault variables, 458 samples are correctly isolated. Hence, the 
FIR of the RBC-SPE is obtained by 458/500 = 91.6%, which is shown in 
row 3 and column 2 of Table 1. It can be observed that the FIRs of the 

CDC with SPE, CDC with T2, and RBC with T2 are 70.8 %, 75.6 %, and 
62.4 %, respectively. The FIRs of the CDC with φ, RBC with SPE, RBC 
with φ, and the proposed method are 93.8 %, 91.6 %, 95.2 %, and 94 %, 
respectively. In summary, the proposed method has good isolation 
performance in the case of a single fault. 

In the 500 fault samples, the number of fault samples caused by 
variables 1 to 6 is 86, 69, 76, 86, 98, 85, respectively. The isolation 

Fig. 12. Fault isolation results of variables 1–6 using the RBC-φ method.  

Fig. 13. The Tennessee Eastman process flowsheet [35].  
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results of fault variables under different methods including RBC with φ, 
CDC with SPE, CDC with φ, and the proposed method are shown in 
Fig. 9. 

In Fig. 9(c), it can be observed that many non-fault variables are 
incorrectly isolated as the fault variables in the CDC with SPE method, 
which results in the low FIR value as shown in Table 1. In Fig. 9(b) and 
(d), the contributions of certain fault variable and certain non-fault 
variable (such as the fault variable 1 and non-fault variable 3 in the 
first 86 samples) are very close due to the smearing effect, although the 
FIR value of RBC-φ and CDC-φ is highly reached to 95.2 % and 93.8 %. 
The comparison results of fault isolation show that the performance of 
the proposed method is better than the traditional methods since the 
smearing effect is reduced. The results are consistent with the theoretical 
analysis. 

5.1.2. Fault isolation result in the presence of multiple faults 
In the case of multiple faults, the fault is added by Xt = X∗t + ξpfp +

ξqfq. The fault direction ξp and ξq are both uniformly distributed among 

the six possible directions. The fault magnitude fp and fq are both 
random numbers uniformly distributed in the range of [0,5]. Under this 
assumption, 500 fault samples are generated by the model. The fault 
isolation results are shown in Table 2 and Fig. 10. 

In these 500 fault samples, the number of samples (NoS) with fault 
direction ξ1 and ξ2 is 30, NoS with fault direction ξ2 and ξ4 is 39, NoS 
with fault direction ξ2 and ξ6 is 31, NoS with fault direction ξ3 and ξ4 is 
30, NoS with fault direction ξ4 and ξ6 is 32, and NoS with fault direction 
ξ5 and ξ6 is 26. The contribution of variables 1 to 6 is indicated 
respectively in dark blue, orange, yellow, purple, green and light blue in 
Fig. 10, Fig. 11, and Fig. 12. 

In the case that multiple faults occurred simultaneously, the fault 
isolation is achieved only when all fault variables of a sample are iso
lated, that is, all the contribution values of the fault variables are greater 
than the isolation threshold value. Isolation results of fault variables 
under different methods including the proposed method, CDC with φ, 
and RBC with φ are shown in Figs. 10, 11, and 12, respectively. The fault 
variables can be easily isolated in Fig. 10 according to the variable 
contribution rate. While in the other two methods as shown in 
Figs. 11–12, the contribution rate of the fault variables and some normal 
variables are close which is hard for fault isolation. The results of fault 
isolation in Table 2 show that the FIR of the proposed method is 86.0 %, 
which is much better than the traditional methods. 

5.2. TE process analysis 

The TE process is widely used to evaluate the performance of the 
fault detection algorithms [35–37]. Five operating units, including a 
reactor, a condenser, a compressor, a separator, and a stripper are 
included in the TE process [38]. Two liquid products, G and H, are 
produced from gaseous reactants A, B, C, E and inert gases B, as shown in 
Fig. 13. Dataset contains 21 faults, as presented in Table 3 [35], and each 
sample of dataset contains 52 variables. These variables can be used for 
fault isolation. In this experiment, the datasets in the case of fault 1 and 
fault 7 are used to evaluate the performance of the proposed fault 
isolation method. The fault type of these two datasets is step fault, which 
belongs to additive fault. According to the theoretical analysis in Section 
4, the fault variables of fault 1 and fault 7 can be isolated. 960 samples in 
the training dataset are generated under normal operation condition, 
which are used to determine the isolation threshold value. 800 faulty 
samples in the case of fault 1 and fault 7 are used as test sets, 
respectively. 

To compare with other methods, several CA-based methods are also 

Table 3 
Fault description for the Tennessee Eastman process.  

Fault 
No. 

Description Type 

1 A/C feed ratio, B composition constant (Stream 4) Step 
2 B composition, A/C ratio constant (Stream 4) 
3 D feed temperature (Stream 2) 
4 Reactor cooling water inlet temperature 
5 Condenser cooling water inlet temperature 
6 A feed loss (Stream 1) 
7 C header pressure loss — reduced availability 

(Stream 4) 
8 A, B, C feed composition (Stream 4) Random 

variation 9 D feed temperature (Stream 2) 
10 C feed temperature (Stream 4) 
11 Reactor cooling water inlet temperature 
12 Condenser cooling water inlet temperature 
13 Reaction kinetics Slow drift 
14 Reactor cooling water valve Sticking 
15 Condenser cooling water valve 
16 Unknown Unknown 
17 Unknown 
18 Unknown 
19 Unknown 
20 Unknown 
21 The valve for Stream 4 was fixed at the steady state 

position 
Constant 
position  

Fig. 14. The actual distribution situation of variables before fault 1 occurrence.  
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conducted including RBC and CDC. In these methods, the number of 
principal elements is selected being 31 (i.e., the contribution 
rate˃90 %). In the proposed method, the number of nearest neighbors is 
selected as K = k = 14, and the remaining parameters are the same as 

the numerical simulation. 
In the case of fault 1, the system is in the open-loop control, the ratio 

between the reactants A and C changed, which sequentially affects 44th 
variable, 1st variable, 45th variable, 4th variable, 38th variable, 19th 

Fig. 15. The actual distribution situation of variables after fault 1 occurrence.  

Fig. 16. Fault isolation results in the case of fault 1 using different methods.  

L. Mu et al.                                                                                                                                                                                                                                       



ISA Transactions 152 (2024) 113–128

126

variable, 18th variable, and 50th variable [4]. The actual distribution 
situation of these variables before and after occurrence of fault 1 are 
shown in Fig. 14 and Fig. 15, respectively. Note that there are 960 
samples in total, faults were introduced after the 160th sample in 
Figs. 14 and 15. 

Fig. 16 shows the variable isolation result in the presence of fault 1. 
Using these traditional CA-based methods including RBC-φ, CDC-SPE, 
and CDC-φ, error isolation can be observed due to the smearing effect. 
For instance, the 29th, 30th, 31st variable in the RBC-φ method is 
incorrectly isolated. While the proposed method is not affected by the 
smearing effect. Therefore, the proposed method can accurately isolate 
the variables including the 1st and 44th variable as shown in Fig. 16(a). 

Fault 7 is caused by the C header pressure loss without change of any 
compositions in the stream [4]. The C header pressure is determined by 
the open position of the feed flow valve of Stream 4, i.e., 45th variable. 
Hence, the 45th variable would be the only variable influenced by fault 
7. The actual distribution situation of 45th variable and 4th variable 
which are strongly correlated after occurrence of fault 7 are shown in 
Fig. 17. 

Fig. 18 shows the result of variable isolation in the presence of fault 
7. Variable 4 is isolated as fault variable by the CDC-SPE method since 
variable 4 and variable 45 have strong correlation, resulting in false 
isolation as shown in Fig. 18(c). In Fig. 18(d), the fault variable can 
hardly be distinguished. While the proposed method is not affected by 

Fig. 17. The actual distribution situation of 45th variable and 4th variable after fault 7 occurrence.  

Fig. 18. Fault isolation results in the case of fault 7 using different methods.  
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the smearing effect. The fault variable (i.e., the 45th variable) can be 
accurately isolated by the proposed method as shown in Fig. 18(a). 

6. Conclusion 

In this paper, a novel fault isolation method using outlier-degree- 
based variable contributions is proposed. The variable contribution in
dicator is defined from the perspective of spatial distance. The smearing 
effect is mitigated significantly compared with traditional CA-based 
fault isolation approaches. The detailed derivation and analysis of isol
ability for fault variables illustrate that the proposed method can isolate 
single fault variable or multiple fault variables. Case studies on nu
merical examples and the Tennessee Eastman process demonstrate the 
effectiveness of the proposed fault isolation method. The proposed 
method exhibits better isolation performance for fault variables, which 
can effectively improve the fault diagnosis effect of industrial processes. 
In future work, identification of the magnitude and shape of the fault is 
worth studying after isolating the fault variables. 
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