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Abstract: This paper investigates the distributed formation control of a group of leader-following
spacecraft with bounded actuation and limited communication ranges. In particular, connectivity-
preserving and collision-avoidance controllers are proposed for the leader with constant or time-
varying velocity, respectively. The communication graph between the spacecraft is modeled via a
distance-induced proximity graph. By designing a virtual proxy for each spacecraft, the spacecraft–
proxy couplings address the actuator saturation constraints. The inter-proxy dynamics incorporated
with a bounded artificial potential function fulfill the coordination of all proxies. In addition, the
bounded potential function can simultaneously tackle connectivity preservation and collision avoid-
ance problems. The distributed formation controllers are proposed for multiple spacecraft with
constant or time-varying velocities relative to the leader. A sliding mode control approach and
the proxies’ dynamics are used in the design of a distributed cooperative controller for spacecraft
to address the cooperative problem between the followers and the leader. Numerical simulations
confirm the effectiveness of the anti-saturation distributed connectivity preservation controller.

Keywords: spacecraft; connectivity preservation; collision avoidance; bounded actuation; artificial
potential function

1. Introduction

Formation control of multiple-spacecraft systems has gained significant attention due
to its flexibility and robustness [1,2]. These advantages make it a competitive method to
implement for space missions, including in synthetic-aperture radar, gravity field measure-
ment, space-based interferometry, and distributed satellite architecture [3,4]. To improve the
flexibility and robustness of spacecraft formations, the focus of formation control methods
is gradually shifting from centralized to decentralized and distributed [5–7].

The distributed formation controllers enable each spacecraft to use the states of its
neighbors to accomplish global tasks cooperatively. The artificial potential function method
is a very common method for distributed formation control for spacecraft formation flying,
and its earliest application can be traced back to [8,9]. Recently, Ref. [10] presented a
collision-free formation controller for reconfiguration control of multiple spacecraft for-
mations. In [11], a distributed cooperative controller was designed based on the artificial
potential function and the sliding mode theory for spacecraft formation with obstacle avoid-
ance. Kristiansen et al. have developed a distributed controller based on integral backstep-
ping and passivity theory for a spacecraft formation attitude-track cooperative system [12].
In [13], the distributed cooperative control of spacecraft formation with communication
time delay is achieved by using the consensus algorithm and backstepping method. A
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robust control method for the leader–follower formation with prescribed performance is
proposed to address the issue of spacecraft formation flying in [14]. The development
of distributed controllers requires the connectivity of the communication graphs at all
times [6,15]. However, due to the communication range constraints of the spacecraft,
the connectivity of the graph might be disrupted by the movements of the spacecraft. A
more practical question is how to preserve the connectivity of the graph during formation
flying [16].

Connectivity preservation controllers have been the focus of research in multi-agent
systems and mobile robotic systems over the past decade [17]. Methods for preserving
connectivity include optimization-based methods [18], artificial potential function-based
methods [19–21], and edge-consensus-based methods [22]. Optimization-based methods
fulfill connectivity preservation by maximizing the algebraic connectivity of the com-
munication graph [23]. The potential function-based approach ensures connectivity of
topological networks by using attractive potential functions at the boundaries [24,25]. The
edge-consensus-based approach solves the problem by converting the formation problem
into an edge-consensus problem [26]. However, most of the above connectivity-preserving
control methods are for first- and second-order systems, which are not applicable to multi-
ple spacecraft systems.

In recent years, there has been growing scholarly interest in the challenge of preserv-
ing connectivity control among multiple spacecraft. One study [27] provided a potential
function-based control method to avoid collisions between spacecraft and preserve com-
munication connectivity simultaneously. The connectivity preservation problem of leader–
follower Lagrange systems is studied, and simulations with spacecraft relative dynamics
are given in [28]. An additional study [29] examined the connectivity preservation coordi-
nated control problem for multiple spacecraft systems subject to limited communication
resources and sensing capability. However, the above studies did not consider the collision
avoidance problem within formations. Ref. [30] tackled the connectivity preservation and
collision avoidance issues in spacecraft formation flying, considering multiple obstacles and
parametric uncertainties under a proximity graph. Similarly, a proposed adaptive tracking
control scheme in another study [31] aimed to ensure inter-collision avoidance, obstacle
dodging, and connectivity preservation in multi-spacecraft formations. Furthermore, Wei
et al. delved into an adaptive leader-following formation tracking control approach for
multiple spacecraft, considering directed communication topology, external disturbances,
and limited sensing ranges [32]. A distributed controller proposed in Ref. [33] addressed
spacecraft formation flying, focusing on preserving communication graph connectivity and
preventing collisions despite bounded actuation.

In the current context, the challenge lies in developing distributed controllers for
multiple leader-following spacecraft that address bounded actuation, connectivity preser-
vation, and collision avoidance simultaneously. Building on previous discussions, this
paper proposes a distributed controller with indirect couplings and bounded artificial
potential functions. The approach begins by defining the communication graph among
spacecraft based on their relative distances. It then introduces a bounded artificial potential
function and outlines the design of a local second-order virtual proxy spacecraft for each
individual spacecraft. These virtual proxies are integrated with the spacecraft using a satu-
rated P + d controller [24]. The distributed formation controllers are proposed for multiple
spacecraft with constant or time-varying velocities of the leader. A sliding mode control
approach and the proxies’ dynamics are used in the design of a distributed cooperative
controller for spacecraft to address the cooperative problem between the followers and
the leader. Finally, the virtual proxies are linked through two potential functions. Numer-
ical simulations confirm the effectiveness of the anti-saturation distributed connectivity
preservation controller.

The paper is organized as follows: Section 2 states the relative dynamics of multiple
spacecraft systems and introduces some concepts about algebra graph theory. Section 3
provides the distributed controllers for the leader with constant or time-varying velocity.
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Numerical simulations are presented in Section 4 to demonstrate the effectiveness of the
proposed control methods. Finally, Section 5 concludes the paper with some final remarks.

2. Problem Statement

This paper mainly studies how to preserve the connectivity of the communication
graph and avoid collisions between all spacecraft during formation reconfiguration. This
section introduces the relative dynamics of spacecraft and some notions of algebraic
graph theory.

2.1. Spacecraft Relative Dynamics

All spacecraft are assumed to be rigid, and the reference spacecraft belongs in an
elliptical orbit. The reference frame, denoted by F r, has its origin at the centroid of the
reference spacecraft. The Xr axis is along the local vertical, the Zr axis is perpendicular
to the reference orbit plane, and the Yr axis can be obtained according to the right-hand
rule, as shown in Figure 1. Consider a system with N + 1 rigid spacecraft denoted by
pi = [pix, piy, piz]

⊤ with respect to the reference frame, where 0 denotes the leader and
1, . . . , N denote the N followers. The relative dynamics of spacecraft i with respect to the
reference spacecraft are described by [34]

mi p̈i = miCi ṗi + migi + fi, i = 0, 1, . . . , N (1)

where

Ci = 2θ̇c

 0 1 0
−1 0 0
0 0 0

,

gi =
µ

r3
i

pi −
 θ̇2

c θ̈c 0
−θ̈c θ̇2

c 0
0 0 0

pi − µ

−
rc
r3

i
+ 1

r2
c

0
0

,

mi denotes the mass of the spacecraft i, fi denotes the control input to be designed, µ
is the gravitational constant of the Earth, θc denotes the true anomaly of the reference
spacecraft, rc denotes the distance of the origin of the reference frame to the Earth’s center,
and ri =

√
(rc + pix)2 + p2

iy + p2
iz represents the distance between the Earth’s center and

the centroid of spacecraft i.

YI

XI

ZI

OI

Earth

Reference spcecraft

Spacecraft 0

Spcecraft N 

Xr
Yr

Zr

Spacecraft 1

Fr

rc

r1

r0

rN

Figure 1. The reference frame for the leader–follower formation.

2.2. The Dynamic Graph Model

The distance-induced proximity graph can be modeled by graph theory. Some notions
of graph theory are presented in this subsection [35]. An undirected graph is denoted
as G(V , E), where V = {1, 2, . . . N} denotes the vertex set and E ⊂ V × V denotes the
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edges set. An edge (i, j) ∈ E if the vertex i can communicate with the vertex j, and they
are called a neighbor of each other. Ni denotes the neighbor set of vertex i, which is
defined as Ni = {j ∈ V(i, j) ∈ E}. It is assumed that the neighbor relationship among the
spacecraft is based on their relative distance. Suppose all spacecraft have the same sensing
distance ∆. The collision distance between spacecraft is denoted as δ. The adjacency
matrix A(G) between all spacecraft is generated dynamically according to the current
distances as follows:

aij(t) =

{
1, if

∥∥pij(t)
∥∥ ∈ (δ̄, ∆̄), i, j ∈ V

}
0, otherwise;

(2)

where δ̄ = δ + ζ1 and ∆̄ = ∆ − ζ2, ζ1 and ζ2 are small constants, pij(t) = pi(t)− pj(t), and
aij = 1 indicates spacecraft i can obtain the states of spacecraft j.

The Laplacian matrix L(G) = [lij] ∈ RN×N is defined as

lij =

{
∑N

j=1 aij, if i = j;

−aij, otherwise.

When the formation system contains the leader, its communication network is denoted
as G(V , E), where V = {0, . . . , N} denotes the vertex set and E denotes the edge set. The
edge set E contains the edges between the followers described in (2), but also the edges
between the followers and the leader. In leader–follower spacecraft systems, ai0 = 0 since
the leader is not affected by the following spacecraft. If the distance between spacecraft i
and the leader is less than the communication distance and higher than the safety distance,
then a0i = 1, otherwise a0i = 0. The above description can be written in matrix form:

a0i =

{
1, ∥pi0∥ ∈

(
δ̄, ∆̄

)
;

0, otherwise.
(3)

Define the matrix H(G) = L(G) + Λ(G), where Λ(G) ≜ diag{a01, a02, . . . , a0n}. The
notation diag{y1, y2, . . . , yn} denotes a diagonal matrix with diagonal entries y1, y2, . . . , yn.
Since the Laplace matrix is symmetric and semi-positive definite, the matrix H(G) is also
symmetric and semi-positive definite.

Lemma 1 ([20]). The matrix H(G) is positive definite if there exists at least one directed path in
the diagram G from the leader to any follower.

To move on, we need the following definition.

Definition 1 ([36]). Let A =
[
aij

]
∈ Rmn and B =

[
bij

]
∈ Rmn. If A and B have real entries,

we write
A ≥ 0 if all aij ≥ 0, and A ≥ B if A − B ≥ 0.

Now, we introduce the following lemma.

Lemma 2 ([28]). If G1 is a sub-graph of G2, that is, G1 ⊆ G2, then we have H1
(
G2

)
≤ H2

(
G2

)
.

Assumption 1. The initial distance-induced proximity graph G(0) is connected, and there exists
at least one spacecraft i such that a0i > 0.

Definition 1 ([37]). The desired formation configuration pd is reachable if the following conditions hold

||pd
i − pd

j || < ∆̄, ∀(i, j) ∈ E(0).

Assumption 2. The desired formation pd is reachable.
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2.3. Control Objective

This paper studies a distributed formation controller for multiple rigid spacecraft in
the presence of bounded actuation, enabling all spacecraft to transition from their initial
formation to the desired formation. The proposed method is designed to preserve the com-
munication graph’s connectivity between all spacecraft during formation reconfiguration.

The saturation function is given first. The vector u ∈ Rm denotes the control input,
whose upper bound is u ∈ Rm. The standard saturation function Sat(·) is defined as [38]

Sat(u) = [sat1(u1), . . . , satm(um)]
⊤,

where

sati(ui) =

{
ūi, |ui| ≥ ūi;
ui, |ui| < ūi.

For the definition of the standard saturation function, one has the following lemma.

Lemma 3 ([24]). Let Sat(·) denote the standard saturation function; for any two vectors
x ∈ Rm, y ∈ Rm the following conclusion holds:

−x⊤ Sat(x + y) ≤ −x⊤ Sat(y).

For second-order systems, a counterexample is given in Ref. [39] to illustrate that
bounded control inputs cannot guarantee the connectivity of the communication network
between robots under certain initial conditions. Therefore, it is not feasible to design an
anti-saturation controller for Equation (1) directly, and additional assumptions need to be
made as follows.

Assumption 3. At the initial moment, the follower is at rest relative to the reference coordinate
frame, i.e., ṗi(0) = 0, i = 1,. . ., N.

Assumption 4. The velocity and acceleration of the leader is bounded, and the acceleration satisfies
∥1n ⊗ p̈0∥ ≤ γ.

Assumption 5. The saturation bound satisfies ∥migi + miCi ṗi∥+ γ ≤ f̄i, where f̄i is the satura-
tion bound for each spacecraft.

Remark 1. From the results in [39,40] one knows Assumptions 1, 4, and 5 are reasonable.
Assumption 2, which guarantees the desired formation is achievable, is also supported by [37].
Preserving the connectivity of a second-order system while using bounded control inputs, as de-
scribed in Equation (1), is generally considered infeasible. An example demonstrating this challenge
can be found in [39]. Therefore, Assumption 3 is reasonable.

With the above assumptions, the objective of this paper can be stated as the following
problem.

Considering the dynamics (1), and ensuring that Assumptions 1–5 are met, design a
controller to achieve the following objectives:

1. If
∥∥pi(0)− pj(0)

∥∥ < ∆ − ϵ, then ∀t > 0,
∥∥pi(t)− pj(t)

∥∥ < ∆, where ϵ is a small
constant;

2. ∀t > 0,
∥∥pij(t)

∥∥ > δ, i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N};
3. ||pi(t)− pj(t)|| → ||pd

i (t)− pd
j (t)||, for all (i, j) ∈ E as t → ∞;

4. ṗi(t) → ṗ0(t), for all i = 1, 2, . . . , N as t → ∞.
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3. Controller Design

In this section, connectivity preservation and collision avoidance control for leader-
following spacecraft systems with bounded actuation is studied. The design procedure
is divided into two cases. First, a virtual proxy spacecraft dynamics is designed for each
follower to solve the actuator input saturation problem. Second, a connectivity-preserving
and collision avoidance controller is proposed for a leader with constant velocity. Finally,
an improved controller is designed for a leader with time-varying velocity. The stability of
these two control methods is theoretically ensured by utilizing the novel Lyapunov-like
artificial potential functions.

3.1. Virtual Proxy Spacecraft Design

Define the following virtual proxy spacecraft p̂i for each follower:

¨̂pi = Sati(ρp̃i)−
N

∑
j=0

aij∇iψ
(
∥p̂ij∥

)
+ ûi, (4)

ûi = −α
N

∑
j=1

aij( ˙̂pi − ˙̂pj)− αai0( ˙̂pi − ˙̂p0), (5)

where p̂0 = p0, ˙̂p0 = ṗ0, and ρ and α are positive constants. The upper bound for Sati is
given later. The bounded artificial potential function ψ

(∥∥p̂ij
∥∥) is proposed as

ψ
(∥∥p̂ij

∥∥) =
Pψr(∥∥p̂ij

∥∥), if ||p̂ij|| ∈
[
δ̂, ||pd

ij||
]
;

Pψa(∥∥p̂ij
∥∥), if ||p̂ij|| ∈

[
||pd

ij||, ∆̂
]
;

(6)

where ψr(∥∥p̂ij
∥∥) and ψa(∥∥p̂ij

∥∥) denote the repulsive and attractive artificial potential
functions, respectively. They are defined as follows:

ψr(∥∥p̂ij
∥∥) =

(∥∥p̂ij
∥∥− ||pd

ij||
)2(

∆̂ −
∥∥p̂ij

∥∥)∥∥p̂ij
∥∥− δ̂ +

(||pd
ij ||−δ̂)2(∆̂−∥ p̂ij∥)

Q

, (7)

ψa(∥∥p̂ij
∥∥) = (

∥∥p̂ij
∥∥− δ̂)

(∥∥p̂ij
∥∥− d

)2(
∆̂ −

∥∥p̂ij
∥∥)+ (∥ p̂ij∥−δ̂)(∆̂−d)2

Q

, (8)

with ∆̂ = ∆ − ϵ1, δ̂ = δ + ϵ2, ϵ1 and ϵ2 are positive constants, and P and Q are positive
constants. It can be verified that ψ(||pd

ij||) = 0 and ψ(δ̂) = ψ(∆̂) = PQ.

Remark 2. Since the initial distances between the virtual spacecraft are equal to that of the real
spacecraft, the initial distances between the real spacecraft should satisfy the potential function given
in (7) and (8). Therefore, it is necessary to satisfy the following inequality:

∆ − ζ1 = ∆̄ ≤ ∆̂ = ∆ − ϵ1, δ + ζ2 = δ̄ ≥ δ̂ = δ + ϵ2.

Therefore, the parameters should satisfy ζ1 > ϵ1 and ζ2 > ϵ2.

Lemma 4 ([33]). The potential function ψ is monotonically increasing in regard to ||p̂ij|| while
||p̂ij|| ∈ (||pd

ij||, ∆̂), and monotonically decreasing while ||p̂ij|| ∈ (δ̂, ||pd
ij||).
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Lemma 5 ([33]). Denote p̃i = pi − p̂i; the virtual energy stored between spacecraft i and its
virtual proxy can be written as

ϕi(p̃i) =
∫ p̃i

0
Sati(αiσ)

⊤dσ. (9)

The energy function has the following properties:

1. ϕi(p̃i) is a convex function.
2. Within the domain B(0, (ϵ/2)) = {p̃i| ||p̃i|| ≤ (ϵ/2)}, ϕi(p̃i) achieves its maximum while

∥p̃i∥ = (ϵ/2) and its minimum while ∥p̃i∥ = (ϵ/2).
3. Let

ϕmin
i = min

p̃i
ϕi(p̃i) =

∫ p̃i

0
Sati(αiσ)

⊤dσ, s.t. ∥p̃i∥ =
ϵ

2
, (10)

where ϵ = min{ϵ1, ϵ2}. If ϕi(p̃i) ≤ ϕmin
i , then p̃i ∈ B(0, (ϵ/2)).

Remark 3. By the triangle inequality
∥∥pij

∥∥ ≤ ∥p̃i∥ +
∥∥p̂ij

∥∥ +
∥∥p̃j

∥∥, it is enough to ensure∥∥pij
∥∥ ≤ [δ, ∆], (i, j) ∈ E while the following inequalities are satisfied:∥∥p̂ij

∥∥ ∈
[
δ̂, ∆̂

]
, ∥p̃i∥ ≤ ϵ/2. (11)

Remark 4. The energy function ψi could be regarded as a virtual artificial potential function
between the spacecraft i and its proxy. When the input of the controller reaches saturation, the
energy function gradually increases. When the input of the controller is not saturated and the energy
function is greater than zero, the energy function gradually decreases and eventually tends to zero.

3.2. Controller Design for a Leader with Constant Velocity

In this subsection, connectivity preservation and collision avoidance control for a
leader with constant velocity is further investigated. First, define the following auxiliary
parameters:

p̃i = pi − p̂i, p̄i = p̂i − p0, si = ṗi − ṗ0. (12)

From the above equation, one has

˙̃pi = si − ˙̄pi. (13)

Employing the dynamics of virtual proxy spacecraft, the controller is presented
as follows:

fi = − Sati(ρp̃i + βai0si)− migi − miCi ṗi, (14)

where β is a positive constant, and the saturation function Sati is upper bounded by
f̄i − mi ḡ − miCi ṗi.

Define the following Lyapunov equation:

V = Vk + Vp, (15)

where

Vk =
1
2

N

∑
i=1

(
˙̄p⊤

i ˙̄pi + s⊤i misi

)
, (16)

Vp =
1
2

N

∑
i=1

N

∑
j=1

aijψ
(∥∥p̂ij

∥∥)+ N

∑
i=1

ai0ψ(∥p̂i0∥) +
N

∑
i=1

ϕi(p̃i). (17)

With Equation (15), the following lemma holds.
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Lemma 6. Consider the dynamics described in (1) and the Lyapunov function described in (15) un-
der Assumption 3, where M = |E(0)|, ϕmin = mini=1,...,n{ϕmin

i }, and then, choosing appropriate
parameters Q and P that satisfy

M(ψ(∆̄) + ψ(δ̄)) ≤ Q, (18)

P =
ϕmin

Q
. (19)

If V(t) ≤ V(0), then ∥p̃i(t)∥ ≤ (ϵ/2), and
∥∥pij

∥∥ ∈ [δ, ∆], (i, j) ∈ E .

The proof of Lemma 6 resembles Lemma 4 in [33], and is omitted here.

Theorem 1. Consider the dynamics given by (1) under Assumptions 1–3 and 5, and with the
parameters Q and P selected as in (18) and (19), the controllers (4) and (14) can attain the
following objectives:

(1) If
∥∥pi(0)− pj(0)

∥∥ < ∆ − ϵ, then ∀t > 0,
∥∥pi(t)− pj(t)

∥∥ < ∆;
(2) ∀t > 0,

∥∥pij(t)
∥∥ > δ, i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N};

(3) ||pi(t)− pj(t)|| → ||pd
i (t)− pd

j (t)||, for all (i, j) ∈ E as t → ∞;
(4) ṗi(t) → ṗ0(t), for all i = 1, 2, . . . , N as t → ∞.

Proof. Differentiating Equation (16) leads to

V̇k(t) =
N

∑
i=1

[
˙̄p⊤

i ( ¨̂pi − p̈0) + s⊤i mi(p̈i − p̈0)
]
. (20)

The constant velocity of the leader implies that p̈0 = 0. By substituting (1), (4), and
(14) into (20), one has

V̇k(t) =
N

∑
i=1

˙̄p⊤
i

[
Sati(ρp̃i)−

N

∑
j=0

aij∇iψ
(
∥p̂ij∥

)
+ ûi

]

+
N

∑
i=1

s⊤i [miCi ṗi + migi − Sati(ρp̃i + βai0si)− migi − miCi ṗi]

=
N

∑
i=1

˙̄p⊤
i Sati(ρp̃i)−

N

∑
i=1

s⊤i [Sati(ρp̃i + βai0si)]

−
N

∑
i=1

˙̄p⊤
i

N

∑
j=0

aij∇iψ
(
∥p̂ij∥

)
+

N

∑
i=1

˙̄p⊤
i ûi.

(21)

Using Lemma 3 and Equation (13), Equation (21) satisfies

V̇k(t) ≤
N

∑
i=1

˙̄p⊤
i Sati(ρp̃i)−

N

∑
i=1

s⊤i Sati(ρp̃i)

−
N

∑
i=1

˙̄p⊤
i

N

∑
j=0

aij∇iψ
(
∥p̂ij∥

)
+

N

∑
i=1

˙̄p⊤
i ûi.

=−
N

∑
i=1

˙̃p⊤
i Sati(ρp̃i)−

N

∑
i=1

˙̄p⊤
i

N

∑
j=0

aij∇iψ
(
∥p̂ij∥

)
+

n

∑
i=1

˙̄p⊤
i ûi.

(22)



Aerospace 2024, 11, 612 9 of 20

The derivative of (17) yields

V̇p(t) =
1
2

N

∑
i=1

N

∑
j=1

aij
[
∇iψ

(∥∥p̂ij
∥∥) ˙̂pi +∇jψ

(∥∥p̂ij
∥∥) ˙̂pj

]
+

N

∑
i=1

ai0∇iψ(∥p̂i0∥) ˙̂pi +
N

∑
i=1

˙̃p⊤
i Sati(ρp̃i)

=
N

∑
i=1

N

∑
j=0

aij∇iψ
(∥∥p̂ij

∥∥) ˙̂pi +
N

∑
i=1

˙̃p⊤
i Sati(ρp̃i)

=
N

∑
i=1

N

∑
j=0

aij∇iψ
(∥∥p̂ij

∥∥) ˙̄pi +
N

∑
i=1

˙̃p⊤
i Sati(ρp̃i).

(23)

Substituting (5), (22), and (23) into the time derivative of (15) yields

V̇(t) ≤−
N

∑
i=1

˙̃p⊤
i Sati(ρp̃i)−

N

∑
i=1

˙̄p⊤
i

N

∑
j=0

aij∇iψ
(
∥p̂ij∥

)
+

n

∑
i=1

˙̄p⊤
i ûi.

N

∑
i=1

N

∑
j=0

aij∇iψ
(∥∥p̂ij

∥∥) ˙̄pi +
N

∑
i=1

˙̃p⊤
i Sati(ρp̃i)

=
N

∑
i=1

˙̄p⊤
i ûi

=−
N

∑
i=1

˙̄p⊤
i

[
α

N

∑
j=1

aij( ˙̂pi − ˙̂pj) + αai0( ˙̂pi − ṗ0)

]

=−
N

∑
i=1

˙̄p⊤
i

[
α

N

∑
j=1

aij( ˙̄pi − ˙̄pj) + αai0 ˙̄pi

]
=− α ˙̄p⊤(H(t)⊗ I3) ˙̄p.

(24)

According to Assumption 1 and Lemmas 1 and 2, H(t) is positive definite. Therefore,
one has V̇(t) ≤ 0, V(t) ≤ V(0). It follows from Lemma 6 that

∥∥pij
∥∥ ∈ [δ, ∆], (i, j) ∈ E .

Therefore, the communication network between spacecraft is connected and no collisions oc-
cur, i.e., objectives (1) and (2) hold. The negative of (24) also guarantees si, ψ(p̂ij), ϕ(p̃i) ∈
L∞, and ˙̄pi ∈ L2 ∩ L∞. Therefore, ˙̄pi → 0 as t → ∞, that is, ˙̂pi → ṗ0. By using (5),
one has ûi → 0. As ψ(p̂ij) is continuously differentiable and bounded, one can obtain
∇iψ(p̂ij) ∈ L∞. The first-order derivative of (4) gives

...
p̂ i ∈ L∞, and hence, ¨̂pi → 0. The

second-order derivative of (4) shows
...
p̂ i → 0. Thus, ˙̃pi → 0. Because si = ˙̃pi + ˙̄pi, we have

si = ṗi − ṗ0 → 0, i.e., all spacecraft can track the velocity of the leader. The derivative of (1)
shows that p̈i → 0. Therefore, Sati(ρp̃i) → 0 and p̃i → 0. Combining ¨̂pi → 0, ûi → 0 and
(4), one has ∇iψ(p̂ij) → 0, (i, j) ∈ E , which further implies that ||p̂ij|| → ||pd

ij||, (i, j) ∈ E .

Overall, ||pij|| → ||pd
ij||, (i, j) ∈ E .

Remark 5. The parameters in Theorem 1 can be determined as follows:

(1) Compute ψmin
i according to (10);

(2) Compute M by the number of the graph G’s edges;
(3) Select Q to satisfy Equation (18);
(4) Compute P according to (19).



Aerospace 2024, 11, 612 10 of 20

3.3. Controller Design for a Leader with Time-Varying Velocity

In this subsection, connectivity preservation and collision avoidance control for a
leader with time-varying velocity is further investigated. Firstly, we redefine the dynamics
of the virtual proxy spacecraft:

¨̂pi = Sati(ρp̃i)−
N

∑
j=0

aij∇iψ
(
∥p̂ij∥

)
+ ûi, (25)

ûi = −α
n

∑
j=1

aij sgn( ˙̂pi − ˙̂pj)− αai0 sgn( ˙̂pi − ṗ0), (26)

where p̂0 = p0, ˙̂p0 = ṗ0, and ρ and α are positive constants.
By using the virtual dynamics, the controller is designed as follows:

fi = − Sati(ρp̃i)− migi − miCi ṗi + ui, (27)

ui = −β
n

∑
j=1

aij sgn(ṗi − ṗj)− βai0 sgn(ṗi − ṗ0), (28)

where β = α
mi

.

Theorem 2. Consider the dynamics (1) with Assumptions 1–5, and the parameters Q and P are
chosen according to (18) and (19). Using the controller (27) and (28) with parameters satisfying
α > γ√

λmin
, β > mγ√

λmin
, then the following objectives can be achieved:

(1) If
∥∥pi(0)− pj(0)

∥∥ < ∆ − ϵ, then ∀t > 0,
∥∥pi(t)− pj(t)

∥∥ < ∆;
(2) ∀t > 0,

∥∥pij(t)
∥∥ > δ, i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N};

(3) ||pi(t)− pj(t)|| → ||pd
i (t)− pd

j (t)||, for all (i, j) ∈ E as t → ∞;
(4) ṗi(t) → ṗ0(t), for all i = 1, 2, . . . , N as t → ∞.

Proof. Consider the same Lyapunov function as in Equation (15) and note that
Equation (23) still holds. Substituting (25) and (27) into (20) yields

V̇k(t) =−
n

∑
i=1

˙̄p⊤
i

n

∑
j=0

aij∇iψ
(
∥p̂ij∥

)
−

n

∑
i=1

˙̃p⊤
i Sati(ρp̃i)

+
n

∑
i=1

˙̄p⊤
i [ûi − p̈0] +

n

∑
i=1

s⊤i [ui − mi p̈0].

(29)

The derivative of V in (15) can be written as

V̇(t) =
n

∑
i=1

˙̄p⊤
i [ûi − p̈0] +

n

∑
i=1

s⊤i [ui − mi p̈0]. (30)
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Using (26) and (28), Equation (30) yields

V̇(t) =
n

∑
i=1

˙̄p⊤
i

[
−α

n

∑
j=1

aij sgn( ˙̄pi − ˙̄pj)− αai0 sgn( ˙̄pi)− p̈0

]

+
n

∑
i=1

s⊤i

[
−β

n

∑
j=1

aij sgn(si − sj)− βai0 sgn(si)− mi p̈0

]
=− α ˙̄p⊤[D(t)⊗ I3] sgn

([
D⊤(t)⊗ I3

]
˙̄p
)

− α ˙̄p⊤[Λ(t)⊗ I3] sgn([Λ(t)⊗ I3] ˙̄p)

− βs⊤[D(t)⊗ I3] sgn
([

D⊤(t)⊗ I3

]
s
)

− βs⊤[Λ(t)⊗ I3] sgn([Λ(t)⊗ I3]s)

− ˙̄p⊤(1n ⊗ p̈0)− s⊤[diag{m1, . . . , mn} ⊗ I3](1n ⊗ p̈0).

(31)

Using the inequality ∥·∥ ≤ ∥·∥1 and noting that m = mini=1,...,n{mi}, (31) can be
further reduced to

V̇(t) =− α
∥∥∥[D⊤(t)⊗ I3

]
˙̄p
∥∥∥

1
− α∥[Λ(t)⊗ I3] ˙̄p∥1 − ˙̄p⊤(1n ⊗ p̈0]

− β∥[Λ(t)⊗ I3]s∥1 − s⊤[diag{m1, . . . , mn} ⊗ I3](1n ⊗ p̈0)

− β
∥∥∥[D⊤(t)⊗ I3

]
s
∥∥∥

1

≤− α
∥∥∥[D⊤(t)⊗ I3

]
˙̄p
∥∥∥− α∥[Λ(t)⊗ I3] ˙̄p∥+ ∥1n ⊗ p̈0∥∥ ˙̄p∥

− β
∥∥∥[D⊤(t)⊗ I3

]
s
∥∥∥− β∥[Λ(t)⊗ I3]s∥+ m∥1n ⊗ p̈0∥∥s∥.

(32)

From ∥1n ⊗ p̈0∥ ≤ γ and D(t)⊤D(t) + Λ2(t) = L(t) + Λ = H(t), (32) can be further
simplified as

V̇(t) ≤− α

∥∥∥∥[ D⊤(t)⊗ I3
Λ(t)⊗ I3

]
˙̄p
∥∥∥∥+ γ∥ ˙̄p∥ − β

∥∥∥∥[ D⊤(t)⊗ I3
Λ(t)⊗ I3

]
s
∥∥∥∥+ mγ∥s∥

=− α
√

˙̄p⊤[H(t)⊗ I3] ˙̄p + ∥ ˙̄p∥ − β
√

s⊤[H(t)⊗ I3]s + mγ∥s∥
≤− (α

√
λmin − γ)∥ ˙̄p∥ − (β

√
λmin − mγ)∥s∥.

(33)

And because α > γ√
λmin

and β > mγ√
λmin

, V̇(t) ≤ 0 and V(t) ≤ V(0). From Lemma 6 it

follows that
∥∥pij

∥∥ ∈ [δ, ∆], (i, j) ∈ E . Furthermore, V̇(t) ≤ 0 shows that ψ(p̂ij), ϕ(p̃i) ∈ L∞,
and si, ˙̄pi ∈ L2 ∩ L∞. Thus, si → 0, ˙̄pi → 0 as t → ∞. Combining si = ṗi − ṗ0, one has
ṗi → ṗ0 as t → ∞. And because ˙̃pi = si − ˙̄pi, ˙̃pi → 0. Substituting for (26) and (28) we can
see that ûi → 0 and ui → 0. A similar analytical procedure as in Theorem 1 shows that
∇iψ(p̂ij) → 0, (i, j) ∈ E , i.e., ||p̂ij||| → ||pd

ij||, (i, j) ∈ E .

Remark 6. In this paper, it is assumed that the acceleration information of the leader is unknown.
This is because measuring or estimating the acceleration information of the leader often has a large
error. We distinguish between the constant and varying velocity of the leader because the leader’s
acceleration is not used when designing the connectivity preservation controllers. In the case of
constant velocity, since the acceleration is zero, feedback control can be designed directly to realize
distributed formation control of the spacecraft. When the velocity varies, since the acceleration is
variable and unknown, the controller design needs to use the sign function to ensure that the follower
can track the leader. In addition, the effect of the leader’s acceleration on the input saturation also
needs to be taken into account.
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Remark 7. A special case of constant velocity is the case where the leader is the reference spacecraft.
In this case, the leader’s velocity is zero. In addition, the proposed method is also applicable for the
case where the leader is a virtual spacecraft with a reference trajectory and constant velocity. In the
second case, the controller has a wider range of applications and can be used to realize distributed
cooperative control for a leader with varying velocity. However, it is somewhat conservative compared
to the controller in the first case. Furthermore, the second case requires a higher upper bound of the
control force. Therefore, we design the controller for two cases.

4. Simulations

To confirm the effectiveness of the bounded actuation controller in (14) and (27), simu-
lations with three spacecraft are presented in this section. The initial positions of the space-
craft are, respectively, p0(0) = [40, 30, 0]⊤ m, p1(0) = [−20, 0, 0]⊤ m, p2(0) = [0, 0, 0]⊤ m,
and p3(0) = [30, 0, 0]⊤ m. The communication range of all spacecraft is selected as
∆ = 50 m. From (2) and (3) we can obtain the communication network between the space-
craft, as shown in Figure 2. The desired distances between the spacecraft are, respectively,
d̄12 = d̄23 = 40 m, d̄13 = 80 m, d̄01 = 120 m, d̄02 = 80 m, d̄03 = 40 m. The parameters for
the reference orbit are shown in Table 1.

Table 1. Parameters for the reference orbit.

Orbital Parameter Value

Eccentricity 0.01
Inclination 30◦

Longitude ascending node 50◦

Semi-major axis 6971 km
Argument of perigee 30◦

Initial true anomaly 20◦

Gravitational parameter 3.986 × 1014 (m3/s2)

2

0

31

Figure 2. Initial communications network G(0), where 0 represents the leader and 1, 2, and 3 represent
three followers.

4.1. Leader with Constant Velocity

This subsection gives the simulation when the velocity of the leader is constant. The
velocity of the leader in the simulation is ṗ0(t) = [0.1, 0.1, 0.2]⊤ m/s. In addition, the
maximum control input in each axis is assumed to be 0.5 N, and the upper bound of
the standard saturation function is 0.45 N. The parameters are chosen as Q = 10,000,
P = 0.04, α = 0.05, β = 0.1, and ρ = 0.1.

The simulation results are presented in Figures 3–9. Figure 3 displays the distances
between all followers, while Figure 4 shows the distances between the followers and the
leader. In both figures, the distances between the spacecraft are always greater than the
safe distance, ensuring no collision occurs between spacecraft. Figure 3 also indicates
that the distances between spacecraft 1 and 2, and between spacecraft 2 and 3, are always
within the communication distance (∆). Additionally, Figure 4 demonstrates that the
distance between spacecraft 3 and the leader is always less than the communication distance
∆. In summary, the communication network is always connected, and spacecraft 3 is
always able to obtain the status information of the leader, ensuring the connectivity of the
communication network.

Figures 5 and 6 present the velocity of the followers and the velocity tracking error
between the follower and the leader, respectively. Figure 5 suggests that all follower’s
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velocities eventually converge to a constant value, while Figure 6 indicates that the velocity
tracking errors converge to zero, ensuring that all followers eventually converge to the
velocity of the leader. Figures 7 and 8 describe the distance and velocity errors between the
followers and their virtual proxies, respectively. Figure 7 demonstrates that the distance
between each follower and its virtual proxy eventually converges to zero, while Figure 8
demonstrates that the velocity error between each follower and its virtual proxy eventually
converges to zero as well. Figure 9 displays the control input applied to the follower over
time, which indicates that the maximum magnitude of the control force is less than 0.5 N,
satisfying the input saturation constraint.
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Figure 3. Distances between the followers.
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Figure 4. Distances between the followers and the leader.
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Figure 5. Velocities of the followers.
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Figure 6. Velocity errors between the followers and the leader.
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Figure 7. Distances between the followers and their virtual proxy spacecraft.
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Figure 8. Velocity errors between spacecraft and proxy spacecraft.
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Figure 9. Control forces of the followers.

4.2. Leader with Time-Varying Velocity

In this subsection, simulations are performed for the time-varying velocity of the leader.
The spacecraft mass, initial position, velocity, and spacecraft communication distance
are the same as in Section 4.1. The velocity of the leader in the simulation is ṗ0(t) =
[0.1 sin( π

50 t), 0.1 cos( π
50 t), 0.05]⊤ m/s. It is assumed that the maximum thrust that can be

provided by each axis is 2 N.
Using the controllers (25)–(28), the upper bound of the standard saturation function is

0.9 N. Choosing the parameters Q = 10,000, P = 0.04, α = 0.1, β = 0.3, and ρ = 0.3, it is
easy to verify that the constraints in Lemma 6 and Theorem 2 are satisfied.

Figures 10 and 11 display the distances between the followers, and the distances
between the followers and the leader, respectively. In both plots, the distance between all
spacecraft is always greater than the safe distance, ensuring no collision occurs.
Figure 10 indicates that the distances ||p12|| and ||p23|| are always within the commu-
nication distance. In addition, the distance ||p03|| in Figure 11 is always less than the
communication distance between spacecraft. In summary, the inter-spacecraft communica-
tion network remains connected.
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Figures 12 and 13 show the velocities of the followers and the velocity tracking errors
between the followers and the leader, respectively. Figure 12 demonstrates that despite
the varying velocity of the leader, all velocity tracking errors converge to zero, and the
followers achieve the velocity of the leader. Figures 14 and 15 present the distances
and velocity errors between the followers and their virtual proxy spacecraft, respectively.
Figure 14 indicates that the distances between the followers and their virtual proxy space-
craft eventually converge to zero. Figure 15 shows that the velocity errors between the
followers and the virtual spacecraft eventually also converge to zero. Figure 16 provides
a plot of the control forces of the follower. Since the leader’s velocity is continuously
changing, the control forces also vary, with their maximum magnitude remaining less than
2 N, satisfying the saturation constraint.
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Figure 10. Distances between the followers.
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Figure 11. Distances between the followers and the leader.
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Figure 12. Velocities of the followers.
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Figure 13. Velocity errors between the followers and the leader.
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Figure 14. Distances between the followers and their proxy spacecraft.
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Figure 15. Velocity errors between the followers and their proxy spacecraft.
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Figure 16. Control forces of the followers.

5. Conclusions

This paper considered the impact of actuator saturation on connectivity preservation
and collision avoidance control of multiple rigid spacecraft. An indirect coupling strategy
with a bounded artificial potential function is proposed to overcome actuator saturation
constraints. The proposed control algorithm is also applicable to other Lagrangian systems.
In future work, the connectivity preservation of a directed graph in the presence of actuator
saturation will be considered.
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